
Computing Students’ Learning Difficulties in HCI Education
Alannah Oleson Meron Solomon Amy J. Ko

The Information School Art + Art History + Design The Information School
University of Washington University of Washington University of Washington

Seattle, WA, USA Seattle, WA, USA Seattle, WA, USA
olesona@uw.edu meron@uw.edu ajko@uw.edu

ABSTRACT
Software developers often make interface design decisions
and work with designers. Therefore, computing students who
seek to become developers need some education about inter-
face design. While prior work has studied difficulties that
educators face when teaching design to computing students,
there is comparatively little work on the difficulties computing
students face when learning HCI design skills. To uncover
these difficulties, we conducted two qualitative studies con-
sisting of surveys and interviews with (1) computing students
and (2) educators who teach interface design to computing
students. Qualitative analysis of their responses revealed 18
types of learning difficulties students might experience in HCI
design education, including difficulties around the mechanics
of design work, project management skills, the wicked nature
of design problems, and distorted perspectives on design.

Author Keywords
HCI education, interface design education, learning
difficulties, pedagogical content knowledge

CCS Concepts
•Social and professional topics → Computing education;
•Human-centered computing → Human computer interac-
tion (HCI);

INTRODUCTION
In higher education computing programs, students are often
taught to engineer software. However, developers often make
design decisions that impact the usability, accessibility, and
inclusiveness of their software, including at companies that
lack design cultures [41], startups that lack designers [41], in
open source projects without design workflows [42], and even
at large companies where they manage or collaborate with
design teams [46]. In each of these settings, understanding
user experience (UX) and interaction design concepts is key
to creating and collaborating on high-quality software.

Unfortunately, partly because many developers lack design
literacy, software still routinely fails to be usable for diverse

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’20, April 25–30, 2020, Honolulu, HI, USA.
© 2020 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6708-0/20/04 ...$15.00.
http://dx.doi.org/10.1145/3313831.3376149

populations (e.g. [5, 13, 28, 43, 53]). Professional software
engineers still struggle with design-related tasks like require-
ments elicitation [2] and interface creation [56]. Since design
choices are not value-neutral, poorly designed software can
unintentionally perpetuate harmful stereotypes [10, 11, 62] or
disadvantage already-marginalized populations [13].

At the heart of this problem is the fact that many developers
receive little to no design training before entering the work-
force: Students in traditional computer science (CS) degree
programs may take at most one human-computer interaction
(HCI) or interface design class prior to graduation. Even
when computing students take an HCI class, teaching them
design skills is hard [68]. Educators often struggle to engage
students [33, 48, 60], to override persistent perceptions that
designerly aspects of HCI are “inessential” [15], “easy,” or
“commonsense” [17], and to accurately assess students’ design
work [9, 65, 70]. Additionally, much of this research is limited
to educators’ reflections on their own particular courses [45],
so students may face difficulties that educators do not perceive.

The goal of this paper is to understand what computing stu-
dents struggle with when learning to design software interfaces
in order to inform HCI pedagogy. Our working definition
of HCI design in this paper draws on the model described
in Park and McKilligan’s review of HCI design and design
thinking [54], which focuses heavily on software interface
design as a basic HCI design proficiency. For this exploratory
study, we scope our investigation to software interface design
learning, and we use the broad term learning difficulty to repre-
sent anything that prevents a student from effectively learning
or applying software interface design concepts in school or
as a practicing software developer. Our intended audience
consists of higher education instructors who teach software
interface design principles within computing-focused (rather
than design-focused) departments, as well as researchers who
study formal and informal HCI design learning contexts.

In this paper, we ask the research question What difficulties
do computing students face when learning and applying soft-
ware interface design skills? To answer this, we qualitatively
analyzed survey responses (n=117) and interview transcripts
(n=15) from computing students learning design skills in both
formal (post-secondary classes) and informal (on-the-job) set-
tings. From this, we identified 15 types of learning difficulties.
We then validated the set through surveys (n=35) and follow-
up interviews (n=8) with HCI educators who teach software
interface design concepts to computing students. From edu-
cators’ responses, we identified a further 3 types of difficulty,

http://dx.doi.org/10.1145/3313831.3376149
mailto:permissions@acm.org
http://dx.doi.org/10.1145/3313831.3376149
mailto:permissions@acm.org

resulting in a final set of 18 learning difficulties. This set
of student difficulties provides a potential basis for improv-
ing HCI design education. Finally, we discuss implications
of this study for future research on HCI design pedagogy
and educational practice. Our contributions are: (1) A set of
difficulties computing students may face when learning and
applying software interface design concepts, with examples;
and (2) Validation of these difficulties from educators who
teach interface design to computing students, with examples.

RELATED WORK: HCI & UX PEDAGOGY
HCI has many of its roots in traditional CS programs, though
it encompasses many disciplines. Faiola’s Design Enterprise
Model (DEM) [18] situates design, especially interface and
interaction design, as a core competency for students learning
HCI principles. Design skills are known to be difficult to
teach and learn within HCI education contexts [18, 64, 68].
As discussed in the introduction, computing students often
fail to engage meaningfully with the designerly aspects of
HCI [33,48,60] or erroneously view design as easy, inessential
work [15, 17]. HCI educators, who (especially in computing-
focused departments) may not have design backgrounds, often
struggle to assess design-related work adequately [9, 65]. HCI
educators often face a time crunch in already overcrowded
computing curricula as well, [15, 30], forcing educators to
prioritize some topics and exclude others, which leads to wide
variation in HCI coursework and course content.

To address these challenges, prior work has explored the ef-
ficacy of the studio approach for HCI design topics. Studios
are intended to be “bridges” [7] between education and pro-
fessional settings, providing a semi-authentic environment
for students to develop skills they will use in future work-
places. While this body of work has provided valuable insights
into how an HCI classroom can be structured, computing stu-
dents may experience difficulty learning in studio environ-
ments due to their unstructured nature [36, 60]. Educators
have also reported significant challenges successfully teaching
studio-based classes [48], at least some of which were centered
around motivating students to engage with concepts.

The related field of user experience (UX) pedagogy has ex-
plored the space of teaching and learning software interface
design more extensively, often with potential implications for
HCI education. Getto and Beecher drew on their combined
expertise from teaching and industry to propose a model for
incorporating UX education into existing higher education
curricula [20]. Gray and colleagues’ work on UX competency
also provides recommendations for UX pedagogy which may
transfer to HCI contexts. For instance, Gray’s analysis of how
student designers transition into professional communities in-
dicates that perceptions of competence are often situated in a
particular context and individual experience, which implies a
need to focus on designerly identity formation and working
within organizational constraints in UX higher education [26].
Gray et al. subsequently proposed a model of the interactions
that occur between individual and group competence in pro-
fessional UX contexts: Individual knowledge (often gained
through formal education) forms a basis for individual compe-
tence, but it also interacts with informally gained knowledge

which comes from the group or organizational context [27].
Both formal and informal learning play a role in UX com-
petence under this model, which suggests a need to study
learning difficulties in both contexts to gain a complete picture
of students’ educational experiences.

In both HCI and UX pedagogy, prior work has leveraged the
frame of learning difficulties to gain insights into how to im-
prove education. This kind of framing is beneficial to both
students and educators [64]. Getto and Beecher’s investiga-
tion identified the presence of significant institutional barriers
to implementation of UX education and provided strategies
for surmounting these barriers by calling for increased part-
nerships between academia and industry, though it did not
directly address student learning difficulties [20]. Siegel and
Stolterman framed their study of non-designers transitioning
into design roles around a set of observed student learning
barriers, which they drew upon to propose a framework for de-
signing instructional activities for HCI design classrooms [64].
However, this particular study drew on the experiences of stu-
dents of many different educational backgrounds taking part
in a design-focused program. In contrast, our investigation
seeks to understand the experiences of students with a specific
(computing-based) educational background enrolled in a pro-
gram where design is not the main focus. We seek to extend
this body of work which uses student learning difficulties as
a focus to inform HCI education around software interface
design principles.

STUDY 1: STUDENT PERSPECTIVES

Method: Surveys and Interviews
To begin identifying the kinds of difficulties computing stu-
dents face when learning software interface design skills, we
collected and analyzed data from both surveys and interviews.

Surveys of Students Formally Learning Design
We surveyed undergraduate computing students enrolled in
introductory software interface design classes at two large,
public, U.S. universities:

• Computer science students enrolled in a course at Univer-
sity 1 (U1A), which focused on usability principles. This
course was only mandatory for students enrolled in a non-
default option within their major, and was generally taken
in students’ 3rd or 4th year.

• Information science students enrolled in a course at Uni-
versity 2 (two sections – U2B and U2C) focused on design
methods [12] with a human-centered design model. This
course was mandatory for all students in the major and typi-
cally taken in students’ 2nd year or later. We considered the
information science students at University 2 to have comput-
ing backgrounds due to the highly technical nature of their
program and its strong emphasis on software development.

Due to the sequencing of the universities’ programs, this was
likely the first formal exposure to software interface design
concepts for many students.

The surveys we used at each university contained similar items,
adjusted only to fit the particular class’s context. We prompted

students to “Write down any questions you still have about
prototyping [or other relevant design topic] after today’s les-
son.” We elicited learning difficulties by asking for students’
questions about design-related topics (as opposed to asking
them to directly report the nature of their struggle) because
students may not have had the language or awareness to accu-
rately identify the causes of their confusion, especially if they
were new to design work and unfamiliar with terminology.

We also collected demographic data to verify students’ fit with
the population of study, including students’ self-reported fields
of study (to verify they were computing-related) and their
self-reported experience with designing interfaces (to verify
their novice status). We did not collect further demographic
information (e.g. gender, race/ethnicity, age) both because
we wished to keep the survey lightweight and because we
did not believe it to be relevant to the topic of study during
this initial investigation. At University 1, we administered the
surveys electronically via a link sent to a learning management
system; At University 2, a researcher attended the classes and
administered surveys to students on paper.

From these three courses at two universities, we collected
117 responses (U1A: 13, U2B: 33, U2C: 71) representing
perspectives from 88 students (U1A: 9, U2B: 41, U2C: 38)
since some students wrote multiple questions.

Interviews with Students Informally Learning Design
The perspectives collected through the above surveys represent
learning difficulties experienced in formal educational con-
texts. However, learning can also occur in informal contexts,
such as on the job or while working on software design projects
for external clients. We therefore conducted interviews with
developers who had practiced software interface design in
diverse contexts, allowing us additional insight into informal
learning processes. To qualify for an interview, participants
needed to (a) self-identify as having a computing background,
(b) have designed an interface for at least one piece of software,
and (c) self-identify as a novice-to-intermediate software inter-
face designer. We recruited participants through mailing lists
and forum announcements and provided incentives of $20 to
those who completed the interview. Though we did not limit
our recruitment to students only, all interview participants
were current or recently graduated undergraduate and graduate
computing students. Therefore, we refer to interviewees as
students when reporting results.

Interview participants met with a researcher on University
2’s campus for a semi-structured interview consisting of two
main sections. First, participants relayed their background
and education, including details about how they first learned
to design software interfaces. Second, participants described
the most recent piece of software for which they had designed
or created a software interface, then walked the interviewer
through their design process in as much detail as they could
recall. After that, they discussed their “typical” design process
(whether or not it aligned with their most recent project) and
any particular challenges they recalled during design work.

We conducted 15 interviews in total. Participants described
interface design work in a wide array of contexts, ranging

from intensive year-long projects with external clients such
as graduate capstones, to entirely on-the-job self-teaching of
design principles and concepts, providing rich insights into
varied learning difficulties. We audio-recorded and transcribed
the interviews, and took handwritten notes during the inter-
views to provide context. In total, we collected and analyzed
about 245 minutes of audio.

Qualitative Analysis
Two researchers performed the qualitative analyses:

• The 1st author, a computing education researcher with five
years of research experience in HCI and design methods,
including two years researching the overlap of software
interface design and computing education.

• The 2nd author, a research assistant with one year of research
experience in computing education and design methods as
well as one year of UX design experience.

First, the two researchers collaboratively affinity diagrammed
the 117 survey responses to generate initial themes for our
coding effort with a sensitizing concept of types of learning
difficulty [55]. Through iterative refinement and discussion,
the researchers identified 13 types of difficulties, which formed
the basis of the code set used in subsequent analysis.

Next, the researchers performed two rounds of deductive qual-
itative coding on the transcribed interview data, segmented by
sentence for analysis. In the first round of coding, to scope
the amount of data to analyze, the researchers marked each
sentence in the interview transcript as containing (1–N) or not
containing (0) evidence to suggest the presence of a learning
difficulty. Sentences could contain multiple types of learning
difficulties, in which case researchers marked the number of
distinct types present. The researchers conducted the first
round of coding collaboratively over three 1-hour meetings,
discussing interpretations and eventually achieving agreement.

The second round of deductive coding focused on sentences
that contained at least one type of difficulty. The researchers
divided the data set and each qualitatively coded half the data
using the code set of learning difficulties identified in the sur-
veys as a basis. We allowed for multiple codes per sentence
(since one long sentence might contain evidence of many types
of difficulties) and no codes per sentence (since an interview
participant might talk about a new type of difficulty not ob-
served in the survey data). Once the researchers finished their
respective deductive analyses, they met to discuss interpreta-
tions and address any discrepancies in the application of the
code set, then adjusted their coded data as needed.

Finally, for sentences in the interview data that appeared to
contain difficulties but did not fit into our existing code set,
the researchers collaboratively affinity diagrammed and induc-
tively coded the sentences to identify themes. This inductive
analysis identified two additional types of learning difficulties
that were not present in the survey data. Adding these two
new difficulties produced an updated set of 15 total student-
reported learning difficulties, encompassing data from both
the surveys and the interviews.

Table 1. Descriptions of student-reported learning difficulties identified
in Study 1 surveys and interviews.

Tag Student Learning Difficulty
 WHAT What is design?

 WHY Why do we do this design activity in this way?
 HOW How do I perform this design method?
 INFO How/where do I find a design resource?
 ADAPT How do I adapt parts of this design into my design?
 SYNTH How do I interpret this feedback?

 TEAM How do I work with my teammates effectively?
 STAKE How do I work with clients and stakeholders effectively?
 LIMIT How do I design with limited resources?
 SCOPE How do I scope this design problem?
 STAGE When should I move to the next design stage?

 EVAL How can I choose between options?
 BIAS How can I avoid biasing my design?
 DIVRS How do I design for diversity?

 ID Am I the kind of person that can or should do design?

Study 1 Results: Student-Reported Difficulties
Table 1 describes the 15 student-reported difficulties we found
during our analysis. We adhere to the perspective on qualita-
tive coding presented by Hammer and Berland [31], treating
the results of our coding effort as organizations of claims about
data rather than quantitative data (i.e., measuring inter-rater
reliability) in and of themselves. As a result, we do not report
code frequencies, preferring instead to focus on descriptions
of code instances observed in our data. For ease of reference,
we assign each learning difficulty observed in Study 1 a tag by
which we refer to it throughout the paper (see Table 1). Due
to length constraints, we illustrate each difficulty by providing
two representative quotes: One from the survey data and one
from the interview transcripts (or two from the interviews, if
the difficulty was not observed in surveys). IDs preceding sur-
vey quotes (e.g. U2C) represent the university and class of the
quoted student. IDs preceding interview quotes represent the
speaker (e.g. P8). We then provide a short description of each
difficulty by characterizing common themes that represented
it in surveys and interviews.

WHAT: What is design?
• U2C:“I’m confused about what exactly counts as a proto-

type? Does it have to be a physical object?”

• P8:“[Researcher asks how they first learned design.] I did
not. [laughs] I just did it. ... I don’t think I’ve actually ever
been told how things should be or how things should look...
I have no knowledge of how I *should* design things.”

WHAT difficulties occurred when a student lacked declarative
knowledge, such as facts about design. Students reporting
these kinds of learning difficulties were confused about the
nature of various design objects (e.g. prototypes, wireframes)
and activities (e.g. stakeholder analysis, sketching). In the sur-
veys, though some WHAT difficulties should be expected with
novice designers, students still reported uncertainty about the
nature of design concepts directly after lessons on that topic,
as the U2C student did above after a lesson on prototyping. In
interviews, students reported WHAT difficulties when they dis-
cussed having to do design work without much (if any) formal
training. Recall that an inclusion criteria for the interviews
was that the participant had designed at least one software
interface; despite this, some of the interviewees reported that

they did not even know what UX design was when they began
their projects, or that they never had a concrete design process.

WHY: Why do we do this design activity in this way?
• U2C:“The thing I made on prototype won’t show on the

actual app. What’s [the] point for us to prototype unuseful
interface?”

• P5:“So unfortunately user experience was the last part of
it. ... We started off by making it a very useful tool. And
usable, but then usable came second.”

WHY difficulties arose when students did not understand the
reasoning behind performing a design activity in a particular
way. In the surveys, these difficulties manifested as questions
about why students were spending time working on inter-
faces (prototypes) that were not the actual end products, as
well as questions about the reasoning behind particular design
methods’ utilities (such as brainstorming in isolation before
bringing your ideas to a large group). WHY difficulties did
not necessarily prevent students from practicing design: Stu-
dents reporting them in interviews still completed design work,
though they simultaneously reported confusion about the ratio-
nale behind design tasks. This led some students to question
the importance of design work overall (such as P5 described
above) and put off interface design work until the final stages
of implementation.

HOW: How do I perform this design method?
• U2B:“How do we deal with having more than one design

in the beginning? ... How do you compare ideas?”

• P7:“ [We used] trial and error... My mentor and I would
have an idea, we’d implement it, and we’d test it with peo-
ple. And then it would crash and burn and work terribly.”

Students who reported HOW difficulties in the surveys asked
questions about how to perform the steps of different design
methods. In the interviews, students like P7 often knew that
their current practices were not necessarily optimal, but they
did not know what steps they could take toward formal design
methods. Interview participants that indicated these types of
difficulties sometimes went on to describe how confusing their
(lack of a) design process was, or how the resulting design
was poor quality and took longer to finalize than expected.

INFO: How/where do I find a design resource?
• P14:“When you learn new software, you don’t know what

the software is capable of doing. [P14 describes how
they would follow YouTube tutorials when available.] But
there’s sometimes things that I cannot look for [with]
tutorials. There’s no tutorial online about the topic that I
want to go in. ... all little skills that I needed to pick up
because someone didn’t teach me that.”

• P12:“It was just us developers trying to do as well as we
can. I hadn’t studied the UX process before. ... While I
was working, I just would consume as many articles as I
could on the web. But there was no process I could follow.”

We only observed INFO difficulties in the interview data.
These kinds of difficulties most often manifested as students
sought information to help them design – whether in the form

of a tutorial, a description of a design method, an article about
interface design, or an example to inform their design. In-
terview participants who indicated they struggled with INFO
difficulties sometimes recalled that issues finding resources
slowed their progress or prevented them from doing design
work altogether. INFO difficulties often came up when stu-
dents had to learn design concepts independently (i.e. that
their coursework had not taught them).

ADAPT: How do I adapt parts of this design into my design?
• P11:“I found some websites for [design] references in dif-

ferent systems. But, it’s like, this looks pretty, but how do I
apply it to my prototype? I don’t know how to do that.”

• P14:“ It’s better for me to look for how people do it because
when they’re doing it, I can learn about other stuff as
well as like how the system works and how do they come
together to achieve the thing that I want to do... Later
when I start to get used to the software, I would change
a little bit. It’s like, oh, okay, here they do [a transition]
like 0.5 second, I can do like 0.3. ... Start doing those little
changes that is fitting my expectation more.”

ADAPT difficulties also only appeared in the interview data.
These difficulties revolved around students’ struggles to adapt
elements of an example to their own designs. “Stealing”
successful solutions to analogous design problems [23, 32]
and composing features of those ideas to create novel solu-
tions [51,66] are both known design proficiencies, but comput-
ing students reporting ADAPT difficulties struggled to perform
these tasks. Some students who reported this kind of diffi-
culty were on teams consisting only of software developers
(no designers) and felt they did not have anyone to turn to for
assistance. In any case, students experiencing these difficulties
often took longer than they expected to finish design tasks due
to the extra time needed to adapt designs.

SYNTH: How do I interpret this feedback?
• U1A:“How do I prioritize the information/research I’ve

completed so that I can properly inform my design?”

• P9:“Our findings from research were in a different format
than the design itself. So it’s going from that stuff [results],
like, we were doing an affinity analysis of findings from the
research, from that to the visual layout and stuff like that. ...
[You] kind of have to double check to make sure that you’re
actually doing the research justice and you’re actually
serving their needs in this new interface [version].”

Students who reported SYNTH difficulties often struggled to
synthesize feedback they received from critique sessions or
user evaluations in ways that could inform subsequent design
choices. In the surveys, students who experienced this dif-
ficulty often asked about how to derive requirements from
broad initial research efforts, as well as how to determine the
severity of usability issues discovered through testing. In inter-
views, students who struggled with SYNTH difficulties spoke
about uncertainty over whether their interpretations of feed-
back were “correct,” especially when the feedback received
did not correspond to an obvious design decision. Students
also reported interpreting feedback incorrectly (i.e. in ways

that did not make the interface more usable or useful), which
required extra time and resources to remedy the error.

TEAM: How do I work with my teammates effectively?
• U2C:“How to efficiently communicate with team mem-

bers?”

• P15:“The initial developer I worked with, from the [country
name] team, he had come with this fixed mindset about
how much effort he needed to put in, not how much effort
was actually required for the project. It was more like, ’Oh,
okay, maybe we do need to do all this [work], but I’m only
going to put in this much amount of time.”’

Collaboration with teammates on design work was often dif-
ficult for students. Students reported TEAM difficulties ef-
fectively communicating ideas to others, resolving conflicts
(such as over differing interpretations of results or ownership
of ideas), or working alongside teammates who did not want
to put in sufficient time to do design work well. Students
reported that TEAM difficulties slowed their progress, and a
few students said they wished they had received training on
how to effectively design in teams.

STAKE: How do I work with clients/stakeholders effectively?
• U2C:“Is it true that clients don’t know what they want until

they have seen a lot of things they don’t want?”

• P9:“The biggest issue that jumps to mind is the jargon
that we [designers] use. ... Eventually, if you’re in these
environments, you just use it to describe normal situations.
And then once you’re with users... You have to kind of catch
yourself, when you’re describing how something is going
to be used or how you’re going to collect information ...
explaining these concepts to non-technical users.”

Students also reported difficulties collaborating with clients
and stakeholders on design projects. STAKE difficulties man-
ifested when students struggled to elicit requirements, com-
municate domain-specific information, or present results of
design work to clients who lacked design domain expertise.
In some cases, such as P9’s above, students had to adapt their
communication styles around clients and stakeholders, which
many found difficult. In other cases, STAKE difficulties arose
when clients collaborated poorly with students, which pre-
vented the students from gaining access to needed resources.

LIMIT: How do I design with limited resources?
• U2C:“How to balance creativity and do-ability?”

• P5:“We started working on it [the design] and realized that
maybe we should have asked them [users] that question,
and then that becomes the second iteration, which is costly
in terms of time and money. ... You don’t want to go in
iterations. You want to actually spend time to get lesser
iterations of things. Ask the right questions the first time.”

Students often reported difficulties managing limited
resources—whether the resource in question was time, money,
access to users, or other constraints imposed by the environ-
ment they were working in. In surveys, students questioned
how to prioritize design tasks based on cost-effectiveness,

time-efficiency, and feasibility of implementation. In the in-
terviews, students reported struggling with tight deadlines
(especially those that forced them to change their planned de-
signs), accessing representative users, and balancing practical
concerns with the desire to meet all design goals. Students
who experienced LIMIT difficulties sometimes had to skip
parts of the design process or otherwise leave out features.

SCOPE: How do I scope this design problem?
• U1A:“How do you define a design problem?”

• P9:“Sometimes there is changing expectations ... There’s
certain things that we just couldn’t do anymore ... scope,
basically. Challenging to figure out, if we have one inten-
tion and that ends up not being feasible, how do we still
honor the users, the expectations and requirements, while
having to compromise on other parts of the application.”

Students reported SCOPE difficulties when they tried to de-
fine the boundaries of design problems. These attempts at
scoping sometimes occured at the beginning of the design pro-
cess, when students first began to decide on what they wanted
to create. SCOPE difficulties also occurred in the middle of
students’ design processes as students realized that their ini-
tial conception of the problem was not adequate—a known
byproduct of the design process in literature (c.f. “productive
failure” as described in [57]). Students who struggled with
SCOPE difficulties reported delays in getting started or having
to do “extra” unwanted iteration.

STAGE: When should I move to the next design stage?
• U2B:“How many ideas is too many [during ideation]?

When do you know you have enough?”

• P5:“It [the project]’s still not done yet, and I don’t think
there will ever be a point. I think we’re going to keep
taking suggestions. For me personally, I don’t think we
ever reach a point where everybody becomes happy.”

Students often reported STAGE difficulties in the middle of
their design processes, especially when trying to determine
criteria which signified the need to move on with design work.
Students wanted to know what was “good enough” to move
on from brainstorming, how many user studies or usability
tests needed to be run, or what constituted enough prototype
iterations created. Those who experienced STAGE difficulties
reported frustration with design work that never seemed to be
“done” (similar to P5 above) and confusion over when design
requirements were adequately met.

EVAL: How can I choose between options?
• U2B:“How do you choose the right method for the job?”

• P10:“We actually conduct different interviews with different
user groups. Then we understand each groups’ pain points,
then kinda have to try to solve all the pain points at the
same time. But of course, it’s really hard. This is why
sometimes you have to do some tradeoffs. ... For this one
[project] we only focus on one of the user groups.”

EVAL difficulties arose when students struggled to evaluate
which of several options was most fit for their project. In
the surveys, students asked questions about deciding on the

“best” or “ideal” design method or activity, as well as how
to decide between multiple applicable approaches. In inter-
views, students who reported EVAL difficulties spoke about
the difficulty inherent in evaluating tradeoffs when trying to
satisfy the requirements of competing design goals and decid-
ing which user needs to prioritize over others. Students who
did not know how to progress past EVAL difficulties some-
times reported spending more time than they would have liked
in planning stages, or choosing arbitrarily between options
without grounding the decision in design rationale.

BIAS: How can I avoid biasing my design?
• U1A:“How do we know if a project is truely [sic] a usability

issue or if we are displaying confirmation bias?”

• P8:“I don’t think I’ve actually ever been told how things
should be or how things should look ... I just judge based
on things I’ve seen that I like. I kind of evaluate everything
as *I* look at it. But I have no idea how other people will
interact with it.”

Students who reported BIAS difficulties struggled to prevent
their own inclinations and biases from impacting their design
decisions. In the surveys, students often reported being aware
that their biases could influence their designs (as in the above
survey response), but did not know what to do about it or
how to recognize when it had happened. In the interviews,
students experienced BIAS difficulties when they assumed
that if they personally found the design aesthetically pleasing
and usable, others surely would as well. Sometimes, like P8
described above, students did not know any better ways to
design interfaces than simply relying on their own evaluations.
Students who reported these difficulties often later (e.g. during
user testing) found that their designs were not as high quality
as they had believed, leading some to start over completely.

DIVRS: How do I design for diversity?
• U2C:“How do you design an application that works for

everyone?”

• P1:“[When designing] I’m thinking about how do I build
something for the people that I don’t understand, neces-
sarily, their cultural experiences or how they view, or their
perception of something. ... It [the application] was sup-
posed to be specific to [region other than designer’s place
of residence], but you know, when it comes to development
stuff, there’s just so, so many differences between culture
and that kind of thing that it still makes it difficult.”

DIVRS difficulties imply that students struggled to
perspective-take or empathize with their interface’s target
users. Students reported difficulties designing for diverse
abilities and usage styles, especially when users’ experiences
were very dissimilar to their own. Difficulties around DIVRS
often came up alongside designing for accessibility or inclu-
sion, but were part of broader discussions around usability
as well, especially when students began to realize that peo-
ple could interpret designs quite differently. Students who
reported DIVRS difficulties in the interviews sometimes went
on to describe how their design solutions failed to represent
users’ true needs, and were therefore less useful than intended.

ID: Am I the kind of person that can/should do design?
• U2C:“Is design an easy job that every one can do?”

• P7:“I’m a person who does design to fill the need of there
being design done. ... If I compare myself to people who
identify as UX designers, I think they spend a lot more time
with wireframes and paper prototypes and thinking about
the theory behind their designs. I don’t really identify as a
UX designer, I’m just a person who designs things. I build
stuff and test it, and if it doesn’t work I change it.”

ID difficulties were one of the least commonly observed in
our data, though potentially some of the most problematic.
These kinds of learning difficulties manifested in the surveys
when students asked about intrinsic qualities designers should
possess to be successful. In the interviews, students’ ID diffi-
culties sometimes manifested when students were reluctant to
claim the title of designer, even when they clearly performed
design tasks, like P7 above. Students reporting this reluctance
spoke about designing out of necessity rather than choice (e.g.,
they were working on a developer team with no designers)
and not feeling like they actually “did” design work, even if
they had clearly made design decisions and performed design
activities. ID difficulties may be tied to a lack of design self-
efficacy [3]: Students may not have been confident in their
design abilities, and thus chose not to identify as designers.

STUDY 2: EDUCATOR PERSPECTIVES
The student perspectives represented in the previous section
are important to understand HCI education learning difficul-
ties, especially as the 15 difficulties we found were observed
across multiple learning contexts. However, educators can
also provide perspectives on learning difficulties in the HCI
classroom, which can consist of multiple years of experience
watching their students struggle to learn software interface
design concepts. To learn from these experiences, and to fur-
ther validate the existence of the student difficulties presented
above, we designed and deployed an online survey.

Method
Survey Structure
We created and deployed the English-only educator survey
using an online survey platform. The survey began by veri-
fying that the educator met inclusion criteria: (a) 18 years of
age or older, (b) taught computing students (here, presented
as “students who may create software interfaces in their future
careers” to signal inclusion of non-CS departments), and (c)
taught software interface design concepts to these students.
The survey took educators who affirmed all three to the next
set of questions, which we designed to validate the existence
of the 15 student-reported difficulties uncovered by Study 1.

For each of the 15 difficulties, we presented educators with a
description of the difficulty type (similar to the text in Table
1), then asked them to report if they had observed this type of
difficulty in their classes. Educators could respond in three
ways: “Yes”, “No, but I believe students might experience this
difficulty”, or “No, and I don’t believe this difficulty exists.”
The two “No” variants added a small amount of descriptive
data to an otherwise closed-ended survey response and allow

us to better understand educators’ perceptions of these diffi-
culties. We held the order of items corresponding to WHAT
and WHY difficulties constant across surveys to allow educa-
tors to acclimate to the question format, since we believed
these two kinds of difficulties to be easily identifiable to ed-
ucators. The subsequent order of items corresponding to the
other difficulties was randomized to limit fatigue effects.

To supplement the above closed-ended survey responses with
qualitative data, we included one open-ended item asking edu-
cators to describe an interesting instance of student learning
difficulty they had observed. We hoped for this item to surface
learning difficulties we had not observed in Study 1. Finally,
we ended the survey with demographic questions about educa-
tors’ backgrounds and a field for educators to leave their email
if they were open to a follow-up interview.

Recruiting & Respondents
We recruited through four channels, offering a high-level sum-
mary of the survey’s responses and implications for teaching
as an incentive:

• Twitter. Our tweet received 7,204 impressions, 18 retweets,
and 21 likes, and 33 clicks on the link by survey close.

• A closed Facebook HCI educator group with 217 members.
The post was seen by 80 members and received 3 likes.

• Two Slack groups (40 members and 54 members) targeted
at HCI educators, whose membership likely overlapped sig-
nificantly with the Facebook group due to shared leadership.

• Targeted emails (77 total) to HCI and interface design educa-
tors who provided their contact information to the research
team during previous studies relating to this topic.

The survey remained open for 26 days, with the majority of
responses received in the 1st week. We received 52 responses
to the survey. Of those 52, 36 finished the entire survey (a
drop out rate of 30.8%), and of those 36, 35 (97.2%) met our
inclusion criteria. We discarded the 17 responses that were
unfinished or did not meet inclusion criteria. The results be-
low therefore represent perspectives from 35 HCI educators
who teach software interface design concepts to computing
students. To put the 35 responses in perspective, in recent
proceedings, a few hundred institutions publish HCI-related
work at the ACM CHI conference each year. Assuming one ed-
ucator who fits our target population at each institution, our 35
responses might represent 5-10% of the current population of
HCI educators. While this number is still relatively small, we
feel that it is representative enough to provide initial insights,
especially since many educators reported similar themes in
their open-ended responses (suggesting saturation).

Table 2 shows an overview of educators’ demographics. Most
taught in the United States at large, public universities, and
most self-reported their main field of study or practice as
HCI or CS. The educators reported a wide range of years of
teaching experience, though most reported 1-5 years of overall
experience and 1-5 years of experience specifically teaching
interface design skills to computing students.

Country Main Field Years Teaching (Total) Years Teaching HCI Main Teaching Institution
US: 26 HCI: 16 <1 year: 0 <1 year: 2 Large, public university: 21

Canada: 2 CS: 9 1-5 years: 15 1-5 years: 15 Small, public university: 5
Germany: 2 Soft. Eng: 3 5-10 years: 5 5-10 years: 5 Large, private university: 3

Austria: 1 Design: 3 10-20 years: 6 10-20 years: 8 Small, private university: 2
Denmark: 1 CSCW: 1 20+ years: 9 20+ years: 4 Community/Junior College: 1
Morocco: 1 Web Design: 1 Professional training program: 1

Philippines: 1 User Research: 1 Other (did not report): 1
UK: 1 UX: 1

Table 2. Demographics of the 35 educators who responded to the Study 2 survey.

Follow-up Interviews
To further explore educators’ perspectives, we followed up
with a subset of the educators who both left their email and an-
swered the open-ended question about an interesting instance
of student learning difficulty. The goals of these follow-up
emails included clarifying details of educators’ responses and
gaining insight into educators’ perceptions of the student learn-
ing difficulties. Of the 35 educators, 17 provided both contact
information and an description of a time they noticed students
struggle. The 1st author reached out to 13 of these educators by
email with targeted questions about their open ended responses.
Of these, 8 responded, providing additional qualitative data.

Qualitative Analysis
We combined the data received from educators’ follow-up
interviews with the data from the open-ended responses on
the survey. The resulting data consisted of a set of qualitative
descriptions of student learning difficulties, encompassing per-
spectives from 27 of our 35 educators. To analyze this data,
the same pair of researchers from Study 1 performed a the-
matic analysis [55]. The primary analyst (1st author) examined
the text of the qualitative data and annotated it with memos
indicating each time an educator wrote about a type of student
learning difficulty. The secondary analyst (2nd author) did the
same, verifying the primary analyst’s notations and adding
their own. The two analysts then collaboratively affinity di-
agrammed the memoized data with a sensitizing concept of
types of learning difficulty to align with the analysis perspec-
tive used in Study 1. Loosely, this resulted in two categories of
data: Student learning difficulties that we identified in Study 1
(which served to verify the existence of student-reported diffi-
culties), and new difficulties that we had not observed in Study
1. For the data that indicated new difficulties, the analysts per-
formed a subsequent round of collaborative inductive coding
to surface 3 new types of student learning difficulties, which
we present below. As before, we do not treat the results of this
analysis as quantitative data, but rather as an organization of
claims about data [31].

Study 2 Results: Educator-Reported Difficulties
Table 3 shows the results for the closed-ended survey ques-
tions about the student-reported difficulties from Study 1. For
each of the 15 student-reported learning difficulties, at least
some educators reported they had observed it in their classes.
Educators’ open-ended responses also described instances of
nearly all of the struggles that students had self-reported in
Study 1 (see Table 4 in the Discussion for an overview).

Our qualitative analysis of educators’ open-ended responses
discovered three additional learning difficulties beyond those

Educator Responses (out of 35)
Difficulty Yes, seen it No, but might exist No, does not exist
WHAT 19 (54.3%) 14 (40.0%) 2 (5.7%)
WHY 22 (62.9%) 13 (37.1%) 0 (0.0%)
HOW 21 (60.0%) 13 (37.1%) 1 (2.9%)
INFO 15 (42.9%) 14 (40.0%) 6 (17.1%)
ADAPT 13 (37.1%) 17 (48.6%) 5 (14.3%)
SYNTH 23 (65.7%) 11 (31.4%) 1 (2.9%)
TEAM 31 (88.6%) 4 (11.4%) 0 (0.0%)
STAKE 18 (51.4%) 15 (42.9%) 2 (5.7%)
LIMIT 24 (68.6%) 10 (28.6%) 1 (2.9%)
SCOPE 30 (85.7%) 5 (14.3%) 0 (0.0%)
STAGE 25 (71.4%) 9 (25.7%) 1 (2.9%)
EVAL 21 (60.0%) 13 (37.1%) 1 (2.9%)
BIAS 17 (48.6%) 17 (48.6%) 1 (2.9%)
DIVRS 19 (54.3%) 13 (37.1%) 3 (8.6%)
ID 14 (40.0%) 18 (51.4%) 3 (8.6%)

Table 3. Frequency of educator responses on the Study 2 survey for
items corresponding to student-reported learning difficulties from Study
1. Percentages indicate proportions out of 35.

we discovered in Study 1. The overarching theme tying these
three difficulties together was that students did not necessarily
perceive difficulties they experience as struggles, even though,
from an educator’s perspective, it was clear that the student
was not successfully learning or applying design knowledge.
One educator characterized these difficulties as follows:

•“Often the problems I see are best categorized as “unknown
unknowns”—where the student confidently conclude[s]
they know what to do next, how to ask a question, or how
to apply a design principle (or decide they don’t need to
apply it), but are actually wrong.”

WARP: Students hold inaccurate perceptions of design
Some educators reported that their students held inaccurate
perceptions of what design entailed or how it related to techni-
cal (programming) work. For instance, one educator described
how making the interface design class mandatory for software
engineering majors revealed resistance to learning:

•“[M]any of the students actually had little to no interest in
engaging with the material and often had condescending
comments such as “I don’t get the point of all this require-
ments gathering”... definitely was a challenge to explain
to a lot of these students why design thinking mattered.”

Other educators reported similar resistance in their classes,
relaying that students who thought interface design was only
about making the software “look pretty” sometimes failed to
engage with class material enough to learn anything. One
educator tied WARP difficulties to design self-efficacy:

•“A lot of students have been conditioned to think that they
“can’t” do certain things (e.g. drawing), and it’s really hard

to get them out of the mindset. It sometimes turned into
stubbornness, where a small number of students have tried
to “prove” they don’t need interaction design to do things
and they know better.”

These difficulties are consistent with prior work in HCI educa-
tion reporting inaccurate perceptions of interface design from
computing students [15, 25].

STUCK: Students fixate on conventional design patterns
Educators also reported that students often adopted elements
of conventional designs without considering if these elements
fit their specific design goals, assuming that there were certain
aspects of interfaces that were “not allowed” to be changed:

•“[S]tudents struggle most with thinking deeply about the
root cause of usability issues and rethinking bigger de-
cisions... Students are often most comfortable adopting
what they see as a standard design or approach and have
a harder time rethinking fundamental assumptions [that]
they never considered to be explicit choices at all.”

One educator elaborated that STUCK difficulties prevented
students from designing software that fit their users’ needs:

•“In many cases it seems they had a solution in mind and
focussed [sic] on this solution rather than finding out more
about the participants.”

Design fixation is a known problem for novice designers, who
may not even be aware that they are fixating [38].

RUSH: Students rush to implement and discount design work
Finally, educators reported that students often rushed through
the early stages of design work and focused entirely too much
on implementation details. One educator reported their stu-
dents rushed through prototyping:

•“Many students like to jump into creating a higher-fidelity
prototype from the beginning. They struggle to justify why
it is important to start implementing their design ideas
through low-fidelity prototyping.”

Another reported that RUSH difficulties might lead students
to focus on low-level details before solidifying the high-level
structure of their designs:

•“Confusion between wireframing and high fidelity mockups.
Students might spend time on visual design while still in
the ideation/architecture stage.”

One educator related RUSH difficulties to the way prior classes
conditioned students to approach programming problems:

•“They tend to approach interface design like programming
in that they assume that if they do the steps and get some
results, then they are successful. It’s something of a “as
long as it compiles and runs on the test data, my job is
done” mentality. I find the most success when I (or my
TAs) push them to consider many of the issues you brought
up [in the survey]; otherwise they will just get things done
as quickly as possible, a bad recipe for interface design.”

Educators reported that students who struggled with RUSH
difficulties produced designs that provided little value to their

users, though students often failed to identify this behavior as
the cause of their poor results.

DISCUSSION AND CONCLUDING REMARKS
The goal of our study was to identify different kinds of diffi-
culties computing students face when learning about software
interface design in order to support the development of HCI
pedagogy. Table 4 lists each type of difficulty we observed
and the data sources supporting it, including relevant ties to
prior work. We found at least four overarching categories of
difficulty reported by students and educators:

• Difficulties around how to do design work (WHAT, WHY,
HOW, INFO, ADAPT, and SYNTH). These arose when stu-
dents struggled to understand the mechanics of interface
design work, and often slowed down or prevented students’
progress on design problems.

• Difficulties around project management skills (TEAM,
STAKE, and LIMIT). These arose when students strug-
gled to collaborate with others or manage limited resources,
sometimes leading to communication breakdowns or the
abandonment of parts of the design process.

• Difficulties around the wickedness of design problems
(SCOPE, STAGE, and EVAL). These arose when students
struggled with the “wickedness” [61] of design problems
with unclear definitions and no definitively correct answers.
Students facing these difficulties reported frustration and
confusion over the ambiguity of design work.

• Difficulties around distorted perspectives (BIAS, DIVRS,
ID, WARP, STUCK, and RUSH). These arose when students
either had difficulties taking the perspectives of others, or
when they did not realize that their own perspectives were at
odds with designing high quality interfaces. Students may
or may not have realized they faced these difficulties.

The set of 18 student learning difficulties presented in this pa-
per provides one component of the knowledge needed to more
effectively teach software interface design concepts to comput-
ing students. For some of the difficulties (WHAT, WHY, HOW,
INFO, ADAPT, TEAM, STAKE, SCOPE, BIAS, DIVRS, ID,
WARP, and STUCK), prior work from learning science, HCI,
software engineering, or design education indicates that they
might be difficult for students who are novice designers (see
Table 4). Others (SYNTH, LIMIT, STAGE, EVAL, and RUSH)
appear to be undiscussed in relevant prior literature, which
may imply that they are unique to this topic and audience.

Though the data we collected was rich, some aspects of our
study design limit the generalizability of these findings. Due
to the high variation between HCI courses across institutions,
we cannot be sure that these observations generalize across
all contexts. For Study 1, our surveys gathered data from
students at only one single instant during instruction and were
presented slightly differently to fit the context of each class.
The surveys also were only deployed at two U.S. based uni-
versities. Our Study 1 interviews were conducted in-person
on a university campus, which may have limited participation.
Further, students in Study 1 likely varied in their ability to
reflect on their own learning. The educators’ perspectives

Students (Study 1) Educators (Study 2)
ID Description Surveys Interviews Surveys Qual. Data Prior Work

WHAT What is design? X X X X [8]
WHY Why do we do this design activity in this way? X X X X [8]
HOW How do I perform this design method? X X X X [36]
INFO How/where do I find a design resource? X X [58]
ADAPT How do I adapt parts of this design into my design?
SYNTH How do I interpret this feedback?

X
X X

X X
X X

[23, 66]

TEAM How do I work with my teammates effectively? X X X X [14]
STAKE How do I work with clients and stakeholders effectively?
LIMIT How do I design with limited resources?

X X
X X

X X
X X

[14]

SCOPE How do I scope this design problem?
STAGE When should I move to the next design stage?
EVAL How can I choose between options?

X X
X X
X X

X X
X X
X X

[2, 22]

BIAS How can I avoid biasing my design? X X X X [53]
DIVRS How do I design for diversity? X X X X [53]
ID Am I the kind of person that can or should do design? X X X X [3, 4]

WARP Students hold inaccurate perceptions of design. X [15, 25]
STUCK Students fixate on conventional design patterns.
RUSH Students rush to implement and discount design work.

X
X

[16, 38]

Table 4. Triangulation: Each student-reported learning difficulty was supported by at least three data sources, while the three educator-reported
learning difficulties indicate struggles students might not have known they faced.

provided in Study 2 expanded our understanding of student
learning difficulties, but they also came from a relatively small
number of educators who fit our inclusion criteria. Several
factors likely influenced what kind of data we were able to
collect, such as the timing of the survey’s deployment, the
kind of educators who were motivated enough to answer our
survey, and educators’ own abilities to reflect upon and recall
students’ experiences in their classes. To safeguard against
these limitations, we relied on extensive use of triangulation
with multiple data sources and with prior work, as seen in Ta-
ble 4. However, some of the interpretations we present might
have been different if we had studied other students or other
teachers. Future work in this area should attempt to discover
if these difficulties persist across varied educational contexts
and whether other difficulties exist that we did not observe.

Nonetheless, our findings reveal a number of interesting im-
plications for research. For instance, how prevalent are these
difficulties in broader contexts? Under what conditions (e.g.,
studio-based vs. traditional lecture-based classes) might com-
puting students experience these kinds of difficulties more or
less often? As HCI expands beyond higher education into
primary and secondary curricula (like Exploring Computer
Science [24] or Code.org [1]), will these learning difficulties
still hold? And what are effective strategies to mitigate stu-
dents’ learning difficulties that fit these categories? The RUSH
difficulty revealed by educators in Study 2 also suggests an
interesting hypothesis: the way we teach computing students
to create software and write code may make them less likely
to succeed at interface design work. Future work in this area
should explore the extent to which prior computing knowledge
influences students’ experiences with these difficulties.

Our results also contribute to the discourse around pedagogical
content knowledge (PCK) [63] development for HCI design
education. PCK is domain-specific [29, 35, 37] and consists
of knowledge of pedagogical strategies to teach a particular
topic, in a particular context, to a particular audience. Exact
definitions of the components of PCK vary (c.f. [8, 19, 50]),
but knowledge of student learning difficulties is generally con-

sidered a core aspect. Our field has only begun to investigate
the nature of computing PCK within the past decade, from pri-
mary and secondary learning environments [6, 21, 49, 59, 67],
to both general [34, 35] and specific [39, 40, 44, 47, 52, 53, 69]
aspects of post-secondary CS education. A prior study of
ours did explore PCK for teaching software interface design
skills [53], but it was scoped specifically to teaching a par-
ticular gender-inclusive interface design method and focused
on educators’ pedagogical strategies rather than students’ per-
spectives. Therefore, the set of student learning difficulties
described in this paper provides some of the first foundations
for future research on PCK for general HCI design education.
Further exploring this space might enable more effective use
of instruction time in HCI classes (which are known to suffer
from time constraints already [15]) through the development
of more effective learning materials, or even help shorten the
onboarding time for new HCI design educators—an important
pursuit to ensure we have enough teachers to keep pace with
the rapid growth of computing education.

Equipped with this better understanding of student learning
difficulties, we can begin to deepen our understanding of how
to provide computing students with effective design educa-
tions. Implementing this newly gained knowledge in curricula
and pedagogy will lead to better teaching and learning around
HCI design concepts. Through this effort, the software in-
dustry as a whole will benefit from a pool of design-literate
computing graduates who enter the workforce ready to under-
stand and contribute to many aspects of large projects, aware
of the impacts of their design choices. Developers will be
empowered to design usable, accessible, ethical, and inclu-
sive software interfaces, allowing more diverse populations to
engage with various technologies and participate in today’s
computing-infused world.

ACKNOWLEDGMENTS
We thank our participants for their role in helping us build a
better understanding of HCI education, as well as our review-
ers for their advice. This work was supported by NSF grants
DGE-1762114, 1735123, 1539179, 1703304, and 1836813.

https://Code.org

REFERENCES
[1] 2018. CS Discoveries Curriculum Guide 2018 - 2019.

(2018). https://curriculum.code.org/csd-18/

[2] Lucas F. Abreu, Glivia A.R. Barbosa, Ismael S. Silva,
and Natalia S. Santos. 2016. Characterizing Software
Requirements Elicitation Processes: A Systematic
Literature Review. In Proceedings of the XII Brazilian
Symposium on Information Systems: Information
Systems in the Cloud Computing Era - Volume 1 (SBSI
2016). Brazilian Computer Society, Porto Alegre, Brazil,
Brazil, 26:192–26:199. http:
//dl.acm.org/citation.cfm?id=3021955.3021988

[3] Albert Bandura. 2010. Self-efficacy. The Corsini
encyclopedia of psychology (2010), 1–3.

[4] R. J. Barnes, D. C. Gause, and E. C. Way. 2008.
Teaching the Unknown and the Unknowable in
Requirements Engineering Education. In 2008
Requirements Engineering Education and Training.
30–37. DOI:
http://dx.doi.org/10.1109/REET.2008.6

[5] Engin Bozdag. 2013. Bias in Algorithmic Filtering and
Personalization. Ethics and information technology 15, 3
(2013), 209–227. DOI:
http://dx.doi.org/10.1007/s10676-013-9321-6

[6] Ofra Brandes and Michal Armoni. 2019. Using Action
Research to Distill Research-Based Segments of
Pedagogical Content Knowledge of K-12 Computer
Science Teachers. In Proceedings of the 2019 ACM
Conference on Innovation and Technology in Computer
Science Education (ITiCSE ’19). ACM, New York, NY,
USA, 485–491. DOI:
http://dx.doi.org/10.1145/3304221.3319773
event-place: Aberdeen, Scotland Uk.

[7] Carol B. Brandt, Katherine Cennamo, Sarah Douglas,
Mitzi Vernon, Margarita McGrath, and Yolanda Reimer.
2013. A Theoretical Framework for the Studio as a
Learning Environment. International Journal of
Technology and Design Education 23, 2 (2013),
329–348.

[8] John D. Bransford, Ann L. Brown, Rodney R. Cocking,
and others. 2000. How People Learn. Vol. 11.
Washington, DC: National academy press.

[9] Robin Braun, Wayne Brookes, Roger Hadgraft, and
Zenon Chaczko. 2019. Assessment Design for
Studio-Based Learning. In Proceedings of the
Twenty-First Australasian Computing Education
Conference (ACE ’19). ACM, New York, NY, USA,
106–111. DOI:
http://dx.doi.org/10.1145/3286960.3286973

[10] Samantha Breslin and Bimlesh Wadhwa. 2014.
Exploring Nuanced Gender Perspectives Within the HCI
Community. In Proceedings of the India HCI 2014
Conference on Human Computer Interaction (IndiaHCI

’14). ACM, New York, NY, USA, 45:45–45:54. DOI:
http://dx.doi.org/10.1145/2676702.2676709

[11] Samantha Breslin and Bimlesh Wadhwa. 2015. Towards
a Gender HCI Curriculum. In Proceedings of the 33rd
Annual ACM Conference Extended Abstracts on Human
Factors in Computing Systems (CHI EA ’15). ACM,
New York, NY, USA, 1091–1096. DOI:
http://dx.doi.org/10.1145/2702613.2732923

[12] Tim Brown and others. 2008. Design thinking. Harvard
Business Review 86, 6 (2008), 84.

[13] Margaret Burnett, Anicia Peters, Charles Hill, and Noha
Elarief. 2016. Finding Gender-Inclusiveness Software
Issues with GenderMag: A Field Investigation. In
Proceedings of the 2016 CHI conference on Human
Factors in Computing Systems (CHI ’16). ACM, New
York, NY, USA, 2586–2598. DOI:
http://dx.doi.org/10.1145/2858036.2858274

[14] Parmit K. Chilana, Rishabh Singh, and Philip J. Guo.
2016. Understanding Conversational Programmers: A
Perspective from the Software Industry. In Proceedings
of the 2016 CHI Conference on Human Factors in
Computing Systems (CHI’16). ACM Press, Santa Clara,
California, USA, 1462–1472. DOI:
http://dx.doi.org/10.1145/2858036.2858323

[15] Elizabeth F. Churchill, Anne Bowser, and Jennifer
Preece. 2013. Teaching and Learning Human-computer
Interaction: Past, Present, and Future. interactions 20, 2
(March 2013), 44–53. DOI:
http://dx.doi.org/10.1145/2427076.2427086

[16] Alma Leora Culén. 2015. HCI Education: Innovation,
Creativity and Design Thinking. International
Conferences on Advances in Computer-Human
Interactions (2015), 125–130.
https://www.duo.uio.no/handle/10852/46215

[17] Alistair D. N. Edwards, Peter Wright, and Helen Petrie.
2006. HCI Education: We are Failing - Why?. In In
Proceedings of HCI Educators Workshop 2006. 23–24.

[18] Anthony Faiola. 2007. The Design Enterprise:
Rethinking the HCI Education Paradigm. Design Issues
23, 3 (2007), 30–45. DOI:http://dx.doi.org/https:
//doi.org/10.1162/desi.2007.23.3.30

[19] Julie Gess-Newsome. 1999. Pedagogical Content
Knowledge: An Introduction and Orientation. In
Examining Pedagogical Content Knowledge: The
Construct and its Implications for Science Education,
Julie Gess-Newsome and Norman G. Lederman (Eds.).
Springer Netherlands, Dordrecht, 3–17. DOI:
http://dx.doi.org/10.1007/0-306-47217-1_1

[20] Guiseppe Getto and Fred Beecher. 2016. Toward a
Model of UX Education: Training UX Designers within
the Academy. IEEE Transactions on Professional
Communication 59, 2 (2016), 153–164. DOI:
http://dx.doi.org/10.1109/TPC.2016.2561139

https://curriculum.code.org/csd-18/
http://dl.acm.org/citation.cfm?id=3021955.3021988
http://dl.acm.org/citation.cfm?id=3021955.3021988
http://dx.doi.org/10.1109/REET.2008.6
http://dx.doi.org/10.1007/s10676-013-9321-6
http://dx.doi.org/10.1145/3304221.3319773
http://dx.doi.org/10.1145/3286960.3286973
http://dx.doi.org/10.1145/2676702.2676709
http://dx.doi.org/10.1145/2702613.2732923
http://dx.doi.org/10.1145/2858036.2858274
http://dx.doi.org/10.1145/2858036.2858323
http://dx.doi.org/10.1145/2427076.2427086
https://www.duo.uio.no/handle/10852/46215
http://dx.doi.org/https://doi.org/10.1162/desi.2007.23.3.30
http://dx.doi.org/https://doi.org/10.1162/desi.2007.23.3.30
http://dx.doi.org/10.1007/0-306-47217-1_1
http://dx.doi.org/10.1109/TPC.2016.2561139

[21] Susannah Go and Brian Dorn. 2016. Thanks for Sharing:
CS Pedagogical Content Knowledge Sharing in Online
Environments. In Proceedings of the 11th Workshop in
Primary and Secondary Computing Education on ZZZ -
WiPSCE ’16. ACM Press, Münster, Germany, 27–36.
DOI:http://dx.doi.org/10.1145/2978249.2978253

[22] J. A. Goguen and C. Linde. 1993. Techniques for
Requirements Elicitation. In [1993] Proceedings of the
IEEE International Symposium on Requirements
Engineering. 152–164. DOI:
http://dx.doi.org/10.1109/ISRE.1993.324822

[23] Gabriela Goldschmidt and Anat Litan Sever. 2011.
Inspiring Design Ideas with Texts. Design Studies 32, 2
(March 2011), 139–155. DOI:
http://dx.doi.org/10.1016/j.destud.2010.09.006

[24] Joanna Goode and Gail Chapman. 2011. Exploring
Computer Science. Technical Report. Computer Science
Equity Alliance. 296 pages.
http://www.exploringcs.org/wp-content/uploads/
2010/08/ExploringComputerScience-v4.0.pdf

[25] Sukeshini Grandhi. 2015. Educating Ourselves on HCI
Education. interactions 22, 6 (Oct. 2015), 69–71. DOI:
http://dx.doi.org/10.1145/2834811

[26] Colin M. Gray. 2014. Evolution of Design Competence
in UX Practice. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems.
ACM, 1645–1654. DOI:
http://dx.doi.org/10.1145/2556288.2557264

[27] Colin M. Gray, Austin L. Toombs, and Shad Gross.
2015. Flow of Competence in UX Design Practice. In
Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems. ACM,
3285–3294. DOI:
http://dx.doi.org/10.1145/2702123.2702579

[28] Tom Gross. 2014. Human-Computer Interaction
Education and Diversity. In Human-Computer
Interaction. Theories, Methods, and Tools (Lecture
Notes in Computer Science), Masaaki Kurosu (Ed.).
Springer International Publishing, 187–198.

[29] Jan H. van Driel, Nico Verloop, and Wobbe de Vos.
1998. Developing Science Teachers’ Pedagogical
Content Knowledge. Journal of Research in Science
Teaching - J RES SCI TEACH 35 (1998), 673–695.
DOI:http://dx.doi.org/https:
//doi.org/10.1002/(SICI)1098-2736(199808)35:
6<673::AID-TEA5>3.0.CO;2-J

[30] Rich Halstead-Nussloch and Han Reichgelt. 2013.
Teaching HCI in a "Crowded" Computing Curriculum. J.
Comput. Sci. Coll. 29, 2 (Dec. 2013), 184–190. http:
//dl.acm.org/citation.cfm?id=2535418.2535447

[31] David Hammer and Leema K. Berland. 2014. Confusing
Claims for Data: A Critique of Common Practices for
Presenting Qualitative Research on Learning. Journal of
the Learning Sciences 23, 1 (2014), 37–46.

[32] Steve Harrison and Deborah Tatar. 2011. On Methods.
Interactions 18, 2 (March 2011), 10–11. DOI:
http://dx.doi.org/10.1145/1925820.1925823

[33] Chenglie Hu. 2016. Can Students Design Software?:
The Answer Is More Complex Than You Think. In
Proceedings of the 47th ACM Technical Symposium on
Computing Science Education (SIGCSE ’16). ACM,
New York, NY, USA, 199–204. DOI:
http://dx.doi.org/10.1145/2839509.2844563

[34] Peter Hubwieser, Marc Berges, Johannes Magenheim,
Niclas Schaper, Kathrin Bröker, Melanie Margaritis,
Sigrid Schubert, and Laura Ohrndorf. 2013a.
Pedagogical Content Knowledge for Computer Science
in German Teacher Education Curricula. In Proceedings
of the 8th Workshop in Primary and Secondary
Computing Education (WiPSE ’13). ACM, New York,
NY, USA, 95–103. DOI:
http://dx.doi.org/10.1145/2532748.2532753
event-place: Aarhus, Denmark.

[35] Peter Hubwieser, Johannes Magenheim, Andreas
Mühling, and Alexander Ruf. 2013b. Towards a
Conceptualization of Pedagogical Content Knowledge
for Computer Science. In Proceedings of the ninth
annual international ACM conference on international
computing education research (ICER ’13). ACM, New
York, NY, USA, 1–8. DOI:
http://dx.doi.org/10.1145/2493394.2493395

[36] C. D. Hundhausen, D. Fairbrother, and M. Petre. 2012.
An Empirical Study of the "Prototype Walkthrough": A
Studio-Based Activity for HCI Education. ACM
Transactions on Computer-Human Interaction (TOCHI)
19, 4 (Dec. 2012), 26:1–26:36. DOI:
http://dx.doi.org/10.1145/2395131.2395133

[37] N. H. Ibrahim, J. Surif, A. H. Abdullah, and N. A. S.
Sabtu. 2014. Comparison of Pedagogical Content
Knowledge between Expert and Novice Lecturers in
Teaching and Learning Process. In 2014 International
Conference on Teaching and Learning in Computing
and Engineering. 240–246. DOI:
http://dx.doi.org/10.1109/LaTiCE.2014.53

[38] David G. Jansson and Steven M. Smith. 1991. Design
Fixation. Design Studies 12, 1 (1991), 3–11.

[39] Yvonne Kao, Katie D’Silva, Aleata Hubbard, Joseph
Green, and Kimkinyona Cully. 2018. Applying the
Mathematical Work of Teaching Framework to Develop
a Computer Science Pedagogical Content Knowledge
Assessment. In Proceedings of the 49th ACM Technical
Symposium on Computer Science Education (SIGCSE
’18). ACM, New York, NY, USA, 888–893. DOI:
http://dx.doi.org/10.1145/3159450.3159521

[40] Cazembe Kennedy and Eileen T. Kraemer. 2018. What
Are They Thinking?: Eliciting Student Reasoning About
Troublesome Concepts in Introductory Computer
Science. In Proceedings of the 18th Koli Calling

http://dx.doi.org/10.1145/2978249.2978253
http://dx.doi.org/10.1109/ISRE.1993.324822
http://dx.doi.org/10.1016/j.destud.2010.09.006
http://www.exploringcs.org/wp-content/uploads/2010/08/ExploringComputerScience-v4.0.pdf
http://www.exploringcs.org/wp-content/uploads/2010/08/ExploringComputerScience-v4.0.pdf
http://dx.doi.org/10.1145/2834811
http://dx.doi.org/10.1145/2556288.2557264
http://dx.doi.org/10.1145/2702123.2702579
http://dx.doi.org/https://doi.org/10.1002/(SICI)1098-2736(199808)35:6<673::AID-TEA5>3.0.CO;2-J
http://dx.doi.org/https://doi.org/10.1002/(SICI)1098-2736(199808)35:6<673::AID-TEA5>3.0.CO;2-J
http://dx.doi.org/https://doi.org/10.1002/(SICI)1098-2736(199808)35:6<673::AID-TEA5>3.0.CO;2-J
http://dl.acm.org/citation.cfm?id=2535418.2535447
http://dl.acm.org/citation.cfm?id=2535418.2535447
http://dx.doi.org/10.1145/1925820.1925823
http://dx.doi.org/10.1145/2839509.2844563
http://dx.doi.org/10.1145/2532748.2532753
http://dx.doi.org/10.1145/2493394.2493395
http://dx.doi.org/10.1145/2395131.2395133
http://dx.doi.org/10.1109/LaTiCE.2014.53
http://dx.doi.org/10.1145/3159450.3159521

International Conference on Computing Education
Research (Koli Calling ’18). ACM, New York, NY,
USA, 7:1–7:10. DOI:
http://dx.doi.org/10.1145/3279720.3279728

[41] Amy J. Ko. 2017. A Three-Year Participant Observation
of Software Startup Software Evolution. In Proceedings
of the 39th International Conference on Software
Engineering: Software Engineering in Practice Track.
IEEE Press, 3–12. DOI:
http://dx.doi.org/10.1109/ICSE-SEIP.2017.29

[42] Amy J Ko and Parmit K Chilana. 2011. Design,
Discussion, and Dissent in Open Bug Reports. In
Proceedings of the 2011 iConference. ACM, 106–113.
DOI:http://dx.doi.org/10.1145/1940761.1940776

[43] Amy J. Ko and Richard E. Ladner. 2016.
AccessComputing Promotes Teaching Accessibility.
ACM Inroads 7, 4 (2016), 65–68. DOI:
http://dx.doi.org/10.1145/2968453

[44] Aubrey Lawson, Eileen T. Kraemer, S. Megan Che, and
Cazembe Kennedy. 2019. A Multi-Level Study of
Undergraduate Computer Science Reasoning About
Concurrency. In Proceedings of the 2019 ACM
Conference on Innovation and Technology in Computer
Science Education (ITiCSE ’19). ACM, New York, NY,
USA, 210–216. DOI:
http://dx.doi.org/10.1145/3304221.3319763
event-place: Aberdeen, Scotland Uk.

[45] Sarah Lewthwaite and David Sloan. 2016. Exploring
Pedagogical Culture for Accessibility Education in
Computing Science. In Proceedings of the 13th Web for
All Conference (W4A ’16). ACM, New York, NY, USA,
3:1–3:4. DOI:
http://dx.doi.org/10.1145/2899475.2899490

[46] Paul Luo Li, Amy J Ko, and Andrew Begel. 2017.
Cross-Disciplinary Perspectives on Collaborations with
Software Engineers. In Cooperative and Human Aspects
of Software Engineering (CHASE), 2017 IEEE/ACM
10th International Workshop on. IEEE, 2–8. DOI:
http://dx.doi.org/10.1109/CHASE.2017.3

[47] Neomi Liberman, Yifat Ben-David Kolikant, and Catriel
Beeri. 2009. In-service Teachers Learning of a New
Paradigm: A Case Study. In Proceedings of the Fifth
International Workshop on Computing Education
Research Workshop (ICER ’09). ACM, New York, NY,
USA, 43–50. DOI:
http://dx.doi.org/10.1145/1584322.1584329

[48] D. Scott McCrickard, C. M. Chewar, and Jacob
Somervell. 2004. Design, Science, and Engineering
Topics?: Teaching HCI with a Unified Method. In
Proceedings of the 35th SIGCSE technical symposium
on computer science education (SIGCSE ’04). ACM,
New York, NY, USA, 31–35. DOI:
http://dx.doi.org/10.1145/971300.971314

[49] Tom McKlin, Taneisha Lee, Dana Wanzer, Brian
Magerko, Doug Edwards, Sabrina Grossman, Emily

Bryans, and Jason Freeman. 2019. Accounting for
Pedagogical Content Knowledge in a Theory of Change
Analysis. In Proceedings of the 2019 ACM Conference
on International Computing Education Research (ICER

’19). ACM, New York, NY, USA, 157–165. DOI:
http://dx.doi.org/10.1145/3291279.3339412

[50] Punyashloke Mishra and Matthew J. Koehler. 2006.
Technological Pedagogical Content Knowledge: A
Framework for Teacher Knowledge. DOI:http:
//dx.doi.org/10.1111/j.1467-9620.2006.00684.x

[51] Eduardo Navas, Owen Gallagher, and Borrough, xtine.
2014. The Routledge companion to Remix studies.
Routledge.

[52] Laura Ohrndorf and Sigrid Schubert. 2013.
Measurement of Pedagogical Content Knowledge:
Students’ Knowledge and Conceptions. In Proceedings
of the 8th Workshop in Primary and Secondary
Computing Education (WiPSE ’13). ACM, New York,
NY, USA, 104–107. DOI:
http://dx.doi.org/10.1145/2532748.2532758

[53] Alannah Oleson, Christopher Mendez, Zoe
Steine-Hanson, Claudia Hilderbrand, Christopher
Perdriau, Margaret Burnett, and Amy J. Ko. 2018.
Pedagogical Content Knowledge for Teaching Inclusive
Design. In Proceedings of the 2018 ACM Conference on
International Computing Education Research (ICER
’18). ACM, New York, NY, USA, 69–77. DOI:
http://dx.doi.org/10.1145/3230977.3230998

[54] Hye Park and Seda McKilligan. 2018. A Systematic
Literature Review for Human-Computer Interaction and
Design Thinking Process Integration. In Design, User
Experience, and Usability: Theory and Practice
(Lecture Notes in Computer Science), Aaron Marcus and
Wentao Wang (Eds.). Springer International Publishing,
725–740.

[55] Michael Quinn Patton. 2014. Qualitative Research &
Evaluation Methods: Integrating Theory and Practice.
SAGE Publications.

[56] Marian Petre and Andre Van Der Hoek. 2013. Software
Designers in Action: A Human-Centric Look at Design
Work (1st ed.). Chapman & Hall/CRC.

[57] Henry Petroski. 2006. Success Through Failure: The
Paradox of Design. Princeton University Press.

[58] Peter Pirolli and Stuart Card. 1995. Information
Foraging in Information Access Environments. In Chi,
Vol. 95. 51–58.

[59] Chris Proctor, Maxwell Bigman, and Paulo Blikstein.
2019. Defining and Designing Computer Science
Education in a K12 Public School District. In
Proceedings of the 50th ACM Technical Symposium on
Computer Science Education (SIGCSE ’19). ACM, New
York, NY, USA, 314–320. DOI:
http://dx.doi.org/10.1145/3287324.3287440

http://dx.doi.org/10.1145/3279720.3279728
http://dx.doi.org/10.1109/ICSE-SEIP.2017.29
http://dx.doi.org/10.1145/1940761.1940776
http://dx.doi.org/10.1145/2968453
http://dx.doi.org/10.1145/3304221.3319763
http://dx.doi.org/10.1145/2899475.2899490
http://dx.doi.org/10.1109/CHASE.2017.3
http://dx.doi.org/10.1145/1584322.1584329
http://dx.doi.org/10.1145/971300.971314
http://dx.doi.org/10.1145/3291279.3339412
http://dx.doi.org/10.1111/j.1467-9620.2006.00684.x
http://dx.doi.org/10.1111/j.1467-9620.2006.00684.x
http://dx.doi.org/10.1145/2532748.2532758
http://dx.doi.org/10.1145/3230977.3230998
http://dx.doi.org/10.1145/3287324.3287440

[60] Yolanda Jacobs Reimer and Sarah A. Douglas. 2003.
Teaching HCI Design with the Studio Approach.
Computer Science Education 13, 3 (2003), 191–205.

[61] Horst W J Rittel. 1987. The Reasoning of Designers.
(1987), 12.

[62] Luciana Salgado, Roberto Pereira, and Isabela Gasparini.
2015. Cultural Issues in HCI: Challenges and
Opportunities. In Human-Computer Interaction: Design
and Evaluation (Lecture Notes in Computer Science),
Masaaki Kurosu (Ed.). Springer International
Publishing, 60–70.

[63] Lee Shulman. 1987. Knowledge and Teaching:
Foundations of the New Reform. Harvard Educational
Review 57, 1 (1987), 1–23. DOI:
http://dx.doi.org/https:
//doi.org/10.17763/haer.57.1.j463w79r56455411

[64] Martin A. Siegel and Erik Stolterman. 2008.
Metamorphosis: Transforming Non-Designers into
Designers, Vol. 378. Sheffield, UK: Sheffield Hallam
University, 1–13.

[65] Charles Thevathayan and Margaret Hamilton. 2017.
Imparting Software Engineering Design Skills. In
Proceedings of the Nineteenth Australasian Computing
Education Conference (ACE ’17). ACM, New York, NY,
USA, 95–102. DOI:
http://dx.doi.org/10.1145/3013499.3013511

[66] Anna Vallgarda and Ylva Fernaeus. 2015. Interaction
Design As a Bricolage Practice. In Proceedings of the

Ninth International Conference on Tangible, Embedded,
and Embodied Interaction (TEI ’15). ACM, New York,
NY, USA, 173–180. DOI:
http://dx.doi.org/10.1145/2677199.2680594

[67] Rebecca Vivian and Katrina Falkner. 2019. Identifying
Teachers’ Technological Pedagogical Content
Knowledge for Computer Science in the Primary Years.
In Proceedings of the 2019 ACM Conference on
International Computing Education Research (ICER
’19). ACM, New York, NY, USA, 147–155. DOI:
http://dx.doi.org/10.1145/3291279.3339410

[68] Lauren Wilcox, Betsy DiSalvo, Dick Henneman, and
Qiaosi Wang. 2019. Design in the HCI Classroom:
Setting a Research Agenda. In Proceedings of the 2019
on Designing Interactive Systems Conference (DIS ’19).
ACM, New York, NY, USA, 871–883. DOI:
http://dx.doi.org/10.1145/3322276.3322381

[69] Aman Yadav and Marc Berges. 2019. Computer Science
Pedagogical Content Knowledge: Characterizing
Teacher Performance. ACM Trans. Comput. Educ. 19, 3
(May 2019), 29:1–29:24. DOI:
http://dx.doi.org/10.1145/3303770

[70] Helen Z. Zhang, Charles Xie, and Saeid Nourian. 2018.
Are their Designs Iterative or Fixated? Investigating
Design Patterns from Student Digital Footprints in
Computer-Aided Design Software. International
Journal of Technology and Design Education 28, 3 (Sept.
2018), 819–841. DOI:
http://dx.doi.org/10.1007/s10798-017-9408-1

http://dx.doi.org/https://doi.org/10.17763/haer.57.1.j463w79r56455411
http://dx.doi.org/https://doi.org/10.17763/haer.57.1.j463w79r56455411
http://dx.doi.org/10.1145/3013499.3013511
http://dx.doi.org/10.1145/2677199.2680594
http://dx.doi.org/10.1145/3291279.3339410
http://dx.doi.org/10.1145/3322276.3322381
http://dx.doi.org/10.1145/3303770
http://dx.doi.org/10.1007/s10798-017-9408-1

	Introduction
	Related Work: HCI & UX Pedagogy
	Study 1: Student Perspectives
	Method: Surveys and Interviews
	Surveys of Students Formally Learning Design
	Interviews with Students Informally Learning Design
	Qualitative Analysis

	Study 1 Results: Student-Reported Difficulties
	WHAT: What is design?
	WHY: Why do we do this design activity in this way?
	HOW: How do I perform this design method?
	INFO: How/where do I find a design resource?
	ADAPT: How do I adapt parts of this design into my design?
	SYNTH: How do I interpret this feedback?
	TEAM: How do I work with my teammates effectively?
	STAKE: How do I work with clients/stakeholders effectively?
	LIMIT: How do I design with limited resources?
	SCOPE: How do I scope this design problem?
	STAGE: When should I move to the next design stage?
	EVAL: How can I choose between options?
	BIAS: How can I avoid biasing my design?
	DIVRS: How do I design for diversity?
	ID: Am I the kind of person that can/should do design?

	Study 2: Educator Perspectives
	Method
	Survey Structure
	Recruiting & Respondents
	Follow-up Interviews
	Qualitative Analysis

	Study 2 Results: Educator-Reported Difficulties
	WARP: Students hold inaccurate perceptions of design
	STUCK: Students fixate on conventional design patterns
	RUSH: Students rush to implement and discount design work

	Discussion and Concluding Remarks
	Acknowledgments
	References

