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On the Role of Design in K-12 Computing Education

ALANNAH OLESON, BRETT WORTZMAN, and AMY J. KO, University of Washington, USA

Design is a distinct discipline with its own practices, tools, professions, and areas of scholarship. However,

practitioners from other fields often leverage aspects of design in their own work, leading to subfields like

engineering design and architecture design that are neither wholly design nor wholly the intersecting disci-

pline. Similarly, design and computing are known to intersect in educational contexts. Unfortunately, we do

not yet have a clear understanding of how to characterize the kinds of design that may accompany computing

topics, resulting in challenges to teaching and learning. This gap is particularly prevalent in K-12 computing

education, where design is often used to promote student engagement but rarely studied as its own disci-

plinary phenomenon. Toward the goal of better understanding the nature and role of design in computing

education, this article motivates and describes two qualitative, exploratory analyses of how design skills man-

ifest in popular K-12 computing education curricula and activities. We find evidence to suggest two types of

design within existing computing education curricula and standards: nondisciplinary problem-space design,

which deals with defining software requirements, and disciplinary program-space design, which deals with

choosing how best to meet those requirements. We find that these two types of computing design may exist

independently, but they often overlap, creating an intriguing intersection of discipline-specific computing

design educational activity. Finally, we discuss the practical implications of proceeding with research and

educational practice in light of these results, highlighting the need for further exploration into the unique

overlap of design and computing education.
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1 INTRODUCTION

The field of design is a distinct discipline, with entire academic departments, areas of scholar-
ship, tools, practices, and professions dedicated to it. However, aspects of design often overlap in
meaningful ways with other disciplines, blurring the boundaries between it and the fields in which
its skills are used. Foundational design literature claims skills such as planning [5, 121], iterative
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problem solving [4, 117, 122], and evaluation of an artifact’s effectiveness, utility, costs, and val-
ues [75, 79, 105, 145] as core to the field.1 Designers are clearly not the only ones who practice
these skills though. In disciplines like engineering and architecture, practitioners might create,
evaluate, and execute project plans, carrying out design work while not necessarily identifying as
designers themselves. This entanglement manifests in discipline-specific design subfields (e.g., en-
gineering design, architecture design), which are neither wholly design nor wholly the intersecting
discipline.

In professional practice, computing-related areas also experience this disciplinary overlap with
design. Work from software engineering shows that developers often make design decisions as
they create software. Developers and software engineers may find themselves solely responsible
for user interface design in smaller startups or in companies that lack design culture [86], or they
may act as gatekeepers for design decisions in open source projects [87]. Even in larger compa-
nies with in-house design teams, software engineers commonly collaborate with or even manage
designers, often contributing to major design decisions [98].

We see evidence of computing’s overlap with design in computing education contexts as well,
often encoded into the definitions and standards of what it means to “know computing.” The
ACM 2005 Computing Curriculum documentation detailing a set of standards for postsecondary
computer science education answers “What is Computing?” with the statement [135]:

“[W]e can define computing to mean any goal-oriented activity requiring, benefit-
ing from, or creating computers. Thus, computing includes designing and building
hardware and software systems for a wide range of purposes; . . . ” (emphasis added)

Similarly, standards and curricula for primary and secondary computing education often inte-
grate design, often as major foci for learning activities. For instance, many of Code.org’s Hour of
Code modules, intended to be students’ first exposures to programming, revolve around both en-
visioning (designing) and creating (engineering) a small animation or game. The first of the AP
CS Principles’ Big Ideas of Computer Science centers on creativity [7], which is often claimed as a
central design trait [4, 41, 43, 77]. Efforts to broaden participation in computing per the computing
education research (CER) goals established in 2014 [33] often rely on problem solving [37, 40, 114,
134] or creativity [51, 55, 71, 120] to engage students, both of which involve design-related skills
and practices. Influential perspectives on computing education may even refer explicitly to design
as a means by which learners are motivated to engage with computing in the first place [62]:

“A student who takes an introductory computer science course wants to make
something. Even if the student doesn’t want to become a professional software
developer, they want to create software, to design something digital.” (Guzdial, em-
phasis preserved)

Design seems to be intrinsically embedded into computing education contexts, especially at the
primary and secondary levels.

Unfortunately, the entanglement of design and computing education often results in difficul-
ties teaching, learning, and applying computing knowledge. Prior work around the teaching and
learning of design within computing contexts (generally in human-computer interaction classes)
repeatedly finds challenges engaging and promoting students’ learning [49, 72, 103, 111, 119],
assessing students’ design-related competencies [16, 136, 148], and enabling instructors to teach
design-related material effectively [27, 74, 110]. Further, design problems appear to pose particular
challenges to those who create software interfaces [115], architectures [126], and requirements [1]

1A more detailed discussion of what design is and what skills it includes can be found in Section 2.
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once they enter the workforce, suggesting that whatever design-related education students receive
is not yet properly preparing them to practice these aspects of computing professions. And yet, we
can’t simply ignore design’s role in computing practice—to do so would misrepresent the field and,
since prior work shows that design proficiencies can contribute to more pronounced computing
expertise [101, 116], runs the risk of being detrimental to computing students’ career readiness.

We claim that a number of these pedagogical challenges stem at least in part from a lack of
understanding on how to characterize and effectively teach design-related skills and topics within
computing education contexts. Recently, Wilcox et al. noted this deficit, contributing initial in-
sights into the role of design in human-computer interaction (HCI) courses and calling for more
research into the intersection of design and computing education [144]. Additionally, though myr-
iad CER-related work analyzes computing curricula and standards through lenses of diversity (e.g.,
[17, 20]), career choices (e.g., [24, 147]), and culture (e.g., [10, 53]), little to no work exists that an-
alyzes computing education materials from a design lens, especially in the rapidly growing area
of primary and secondary computing education. Postsecondary computing education materials
and curricula are often specific to the class instructor or university, lacking the consistency and
reach of materials like the CSTA standards or the Code.org or Exploring CS curricula. Further,
there is growing administrative and political interest in integrating computing proficiencies into
K-12 education. Given the recent and continuing uptake of computing education in K-12 settings,
investigating this demographic in particular provides an opportunity to gain insights relevant to
a much larger population than those who enroll in computing higher education.

Prior attempts to critically investigate and characterize discipline-specific manifestations of de-
sign at all levels have been shown to produce positive results. Design-centered analyses from K-12
and postsecondary engineering education, for instance, surfaced valuable insights around peda-
gogy and practice [35, 106, 133], and while theories of disciplinary applied design can be difficult to
create and generalize, they benefit both practitioners and learners [36, 58, 128]. We can infer that
computing education might find similarly informative results through investigation of the field’s
interactions and overlap with design. Gaining clarity about the nature of design in computing ed-
ucation contexts would likely help inform curricula and pedagogy about what it should mean to
“know computing,” especially in K-12 contexts where design is used to motivate learners. More
clarity might also shed light on how to frame both design and computing to learners in a concise
and understandable way.

This article provides an initial investigation into the nature of discipline-specific computing
design in educational contexts, toward the goal of motivating and laying groundwork for further
research into the overlap of design and computing education. To enable shared understanding
and a working definition of design, we first draw upon literature from the design field itself and
synthesize five basic cross-cutting skills of design work, which later form the basis of our analysis
in Sections 4 and 5. We then review related work from selected design-based education research
sub-disciplines, with a particular focus on how characterizing discipline-specific manifestations of
design supports improved teaching and learning outcomes. We present two exploratory, qualita-
tive studies of popular K-12 computing education standards and learning activities. The first study
asks, What is the nature of design and computing’s overlap in K-12 education? and finds evidence
to suggest two major types of discipline-specific design appearing within computing education:
problem-space and program-space design, which may overlap. The second study, informed by the
results of the first, asks, How do problem- and program-space design manifest in K-12 computing
education activities? and finds evidence to suggest that these two types of design can exist
separately, but that they often overlap in educational contexts, creating an intriguing intersection
of design and computing activity. Finally, we discuss implications for teaching and learning
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computing topics that arise in light of these results, highlighting the need for further research in
this area to support more effective computing education in both K-12 and higher education.

2 BACKGROUND: WHAT IS DESIGN?

2.1 Perspectives on Design

Definitions of design abound, resulting in many perspectives on what design is and what it entails.
The goal of this section is to provide a functional understanding of the nature of design as well as
to identify core skills of design as suggested by design literature.

2.1.1 Design as Planning. Some early perspectives on design viewed it as a means to plan how
an artifact fits into the context of the world. Design from this perspective is a single stage in
the process of creating an artifact that “terminates with a commitment to a plan which is meant
to be carried out” [121]. Designers analyze the problem space of a given issue, define concrete
requirements for a solution’s form, and propose a particular solution that fits the given constraints.
This view has its roots in the systematic design movement [5, 18, 79]. Extreme versions of this
perspective hold that any act of planning an approach, rather than tinkering and learning through
trial and error, is an act of design [121].

2.1.2 Design as Iteration. In contrast to design-as-planning’s single-phase view, many hold that
design is an iterative, reflexive process of finding the most fit solution to a given problem. Fun-
damentally, this perspective sees designing as “a process of error-reduction” [4]. Designers adjust
a solution’s form when they discover a mismatch between it and the world’s context, iterating
through multiple planning, implementation, and testing phases to discover these mismatches. Cen-
tral to this view are the ideas of productive failure [117] and modularization [4]. Many models of
design processes incorporate iteration [45].

2.1.3 Design as Expression. Some perspectives on design hold that the designer embodies as-
pects of themselves or their values within designed artifacts. For instance, design may be a means
of communication [84, 105] or rhetoric [21, 42, 48, 102] (e.g., how Facebook’s design expresses
Mark Zuckerberg’s view of a “post-privacy” world [78]). Each time a designer creates an artifact,
they implicitly communicate about its nature in choosing how to represent it [105] and uphold
particular values, whether they intend to or not [52, 121]. Designed objects from this perspective
are an extension of the designer’s self and an outlet to express their creativity and emotions [15,
52, 84, 108].

2.1.4 Design as a Means to Address Complex Problems. Finally, many view design as the only
way to address “wicked” problems [19]—ill-structured, often incomplete, complex issues not eas-
ily solved through traditional methods [122, 129]. Optimal solutions cannot be found for wicked
problems unless unrealistic constraints are imposed, in which case the solutions fail to fully ad-
dress the original context. Many of the most pressing sociocultural problems of today are wicked.
Consider, for instance, finding effective strategies to address climate change or embedded social
injustice, which are multifaceted and involve complex tradeoffs. This design perspective manifests
itself in DesignX [109] and Transition Design [76], as well as in the popularity of “design thinking”
as taught at Stanford’s d.school [22].

2.2 Core Design Skills

In order to operationalize these somewhat competing perspectives in a concrete manner for our
analysis in Sections 4 and 5, we found it useful to draw out the skills that foundational design
literature claims as integral to design. Five skills in particular seemed to cut across the definitions
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of design discussed above, suggesting they are central to designerly thinking and practice. We
note here that though this list of skills is the result of our own synthesis of the literature, it bears
similarity to sets of design skills presented in other studies of discipline-specific design education
research (e.g., [35]), implying a base level of validity.

2.2.1 Understanding the Context (UtC). Designers use this skill to inform ideation. To fully un-
derstand the context, designers must learn about both existing systems that attempt to address a
problem and any stakeholders who will interact with the designed artifact. Techniques employed
while trying to understand the context involve primary or secondary user research or focus groups
[45, 142] and often also involves perspective-taking or empathizing with target users [65, 132, 146].
From these activities, designers identify pain points and opportunities for improvement that exist
in current systems. The information designers gain from this work forms the underlying ratio-
nale for design requirements. Gaining a rich understanding of the context is critical to ensure that
designers adequately address their clients’, customers’, or users’ needs.

2.2.2 Creative Ideation (CI). Creativity is central to design [4, 41, 43, 77]. Designers employ
creative ideation as a skill when they begin to generate many possible solutions. The goal of this
practice is not to fixate on a single idea, but to explore the solution space and generate many
promising approaches. Creative ideation includes activities like prototyping (i.e., ideating through
making) and otherwise externalizing one’s ideas through sketching or verbal communication. This
skill also encompasses practices like “stealing” successful ideas to analogous problems [60, 66] and
composing features of those ideas to create novel things [104, 140].

2.2.3 Evaluation & Synthesis (ES). As designers generate ideas, they evaluate them against the
constraints of the problem context. The goal of evaluation and synthesis in design is to practice
convergent thinking and begin narrowing down the solution space to a handful of feasible options.
Formal evaluation processes might include critique sessions [75, 145] to gain constructive feedback
from others, evaluation against design heuristics [107], game testing or other empirical evaluations
(e.g., [90, 143]), or code reviews. Informal evaluations also occur in the design process: designers
make their own expert judgments about which ideas are worth pursuing and feasible to implement.
Designers often compare potential solutions against the time and resources they have available or
the prioritization of certain user needs over others, performing an analysis of tradeoffs inherent
in implementing one solution over another.

2.2.4 Iterative Improvement (II). Design is an inherently iterative discipline. Designers use iter-
ative improvement to optimize their solutions and incrementally update them to fit the problem
space. This skill involves the ability to adapt solutions based on feedback, whether that feedback
is from a teammate, a user, or even a technological system such as a debugger. Iterative improve-
ment also necessitates an approach to failure as a learning experience, not as a catastrophic ending:
breakdowns in the design reveal opportunities for improvement [117]. Each iteration on a solu-
tion informs the designer about the problem space’s constraints—information that is taken into
account in successive iterations.

2.2.5 Communication (Comm). Underlying and supporting all designerly practice is the skill of
communication, especially with those in fields other than one’s own. Though this skill is by no
means exclusive to design, communication is a basic design competency [6]. Without the ability
to communicate ideas to teammates, stakeholders, and the general public, designers cannot ensure
that their designs are implemented correctly or that stakeholders understand their roles and re-
sponsibilities. Examples of this skill in practice include describing concepts and ideas in terms that
a particular audience understands, presenting results in fitting manners, and working with teams
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(e.g., of developers, engineers, or stakeholders) to define realistic common goals [2]. Communi-
cation also encompasses the notion of field literacy: designers must be knowledgeable enough in
their stakeholders’ fields and environments that they can interpret feedback and design a solution
appropriate to the context.

3 RELATED WORK: APPLIED DESIGN EDUCATION

Though the core design skills described above remain relatively stable, they manifest in differ-
ent ways when design overlaps with other disciplines. Many fields have benefited from rigorous
investigation of the role design plays within them. Often, the knowledge gained from this work
manifests in a subarea of the discipline’s existing education research. For instance, there exists
engineering education research, which studies the learning and teaching of engineering, but also
engineering design education research, which studies the learning and teaching of engineering-
specific (i.e., disciplinary) design. Here we briefly describe work from architecture design education
and engineering design education, two disciplines in which an understanding of how design in-
tersects with and manifests within in the field helped improve curricula and pedagogy. We also
present relevant work from STEM education, highlighting how design activities are often used
in classrooms to promote understanding of STEM concepts. Finally, we present related work on
teaching design skills in computing contexts, framing this article’s initial attempts to gain insight
into the role of design in computing education as a way to ground future work in disciplinary
computing design education research.

3.1 In Architecture

Architecture was one of the earliest fields to recognize and study its overlap with design in ed-
ucational contexts. For instance, Schön’s influential theory of reflection-in-action [124] arose in
part from observation of architectural design studios. Schön used this theory about the nature
of design in educational contexts to inform frameworks for design knowledge and pedagogical
strategies to help novice designers become effective professionals [125]. Lawson studied how first-
year and final-year architecture students acquired design skills, comparing both groups’ cognitive
strategies for problem solving to scientists and non-designers. The results of this study not only
improved pedagogy by characterizing gaps between first- and final-year design students but also
served as a basis for modifying CAD modeling tools to better enable architectural design practice
[94]. Goel and Pirolli’s recognition of the distinction between design and non-design (engineering)
tasks arose from studying architecture students’ problem conceptions, which enabled more tai-
lored pedagogy for architecture design problem-solving instruction [58]. Notably, Goel and Pirolli
also reported that the skills of design practiced by architecture students seemed to differ from the
kinds of design practiced by mechanical engineering or curriculum design students, indicating a
basis for discipline-specific design education research.

More recently, work in the area has built on these foundations to explore how well the current
state of architecture design education prepares students to deal with the complex problems that
will face them when they enter the workforce. Goldschmidt and Sever discovered differences in
the role of creative ideation in undergraduate and graduate designers’ processes: undergraduate
architectural and industrial designers tended toward creating products, while graduate students
tended to create services or systems [60]. Based on this analysis, Goldschmidt and Rodgers
critiqued the effectiveness of architecture design pedagogy, suggesting that educators focus on
preparing students to address ill-structured “wicked” problems rather than teaching design meth-
ods [59]. Chiaradia et al. proposed educational strategies for integrating values in urban design
education (an offshoot of architecture), instilling ethics and value-sensitive judgment making
into student designers [25]. These and other related works contributed to discourse around the
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nature of design in architecture education, affording both pedagogical improvements and further
refinement of the discipline’s conceptions on how design manifests these kinds of contexts.

3.2 In Engineering

Engineering design education, while academically younger than architecture design education,
has similarly worked to identify the role of design within its discipline. Engineering design is sim-
ilar to computing design in that the two disciplines involved appear to be distinct on the surface,
even though engineers often make design decisions in practice. Sim and Duffy’s early attempt
to categorize the ways design intersected with engineering education resulted in a generic on-
tology of engineering design activities [128], which not only shed light on classroom activities
but went on to inform product life cycle management [85] and system design [57] as well. The
work of Smith et al. work on characterizing “pedagogies of engagement” in the engineering class-
room found that while engineering students tended to be more engaged in project-based learning
classes where they both designed and implemented their ideas, there were still many open ped-
agogical and curricular questions about how exactly to teach engineering design practices [131].
Informed by this work, Prince and Felder found that pedagogies that implement engineering de-
sign well were often more effective at promoting learning than traditional engineering education
[118].

A notable body of work in engineering design education focuses on the development of design
expertise in engineering students. For instance, Lemons et al. studied how physically building
models of design artifacts interacts with engineering students’ design expertise [96]. Though the
authors explicitly caution against interpreting their results too broadly due to the limitations of
their sample, they found evidence to suggest that model construction can enhance creative think-
ing and enable awareness of metacognitive strategies—both of which may contribute to design
expertise development. The Atman et al. series of studies on the differences between freshman
and senior engineering design students (e.g., [8, 9]) helped define concrete learning goals for engi-
neering design pedagogy. To augment this applied work with theoretical understanding, they later
analyzed nearly a decade’s worth of this work through the lens of Schön’s reflective practitioner
theory [124], concluding that certain observable classroom design behaviors are reasonably indica-
tive of design expertise [3]. Leveraging the insights afforded by this investigation, they identified
problem-setting and engaging in reflective conversations with the design space as two trends of
interest in design expertise representation and suggest that future engineering design education
research should explore effective ways of imparting these skills to students.

Within the last decade, multiple researchers have called for more emphasis on discipline-specific
engineering education research (e.g., [54, 130]), spurred in part by the trend toward discipline-
based educational research, but also by the promising results already emerging from the field.
Crismond and Adams established a comprehensive framework of pedagogy needed to teach
K-12 engineering design effectively, encompassing student misconceptions, teaching strategies,
and more [35], helping to define the role design should have in engineering education. Starkey
et al. investigated how engineering students’ creative ideation processes change throughout the
course of a project, finding that the design task itself has an impact on creativity and laying the
groundwork for further educational research into how to teach creativity to engineering students
[133]. Some of the newest work in engineering design education, Neroni and Crilly’s exploration
of how engineering students experience design fixation in isolation and in groups, added to
the general body of work on design fixation and suggested engineering-specific pedagogy for
decreasing fixation [106]. These accomplishments around the learning and teaching of design in
engineering contexts would almost certainly not have been possible without the work that came
before it that helped clarify the role of design in engineering.
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3.3 In STEM Education

In STEM education, design activities are often used not to impart design skills themselves, but
to help students learn about STEM-related topics through designing. For instance, Hmelo-Silver’s
Problem-Based Learning (PBL) approach situates students as active participants in their learning
processes [69]. Many of the goals of PBL, such as the development of problem-solving and collab-
oration skills in students, overlap with the goals of design education and the crosscutting skills of
design discussed in Section 2.2. Hmelo et al. contributed a detailed study of how a Learning By
Design (LBD) approach [91, 92] could help middle school students gain knowledge of the human
respiratory system, finding that students in the LBD classes showed evidence of better learning
outcomes than those who received traditional instruction [68]. They gave several recommenda-
tions for educational practice when including design activities in instruction but noted the impor-
tance of having sufficient time for instruction in this style. Later, Hmelo-Silver and Pfeffer studied
the differences in how experts and novices think about complex systems (in this case, the ecosys-
tem of an aquarium) and found that while novices organize knowledge based on perceptually
salient structural features (e.g., fish, plants, filters), experts organize knowledge at the behavioral
(what the filter does) and functional (why the filter is necessary) levels [70]. This is consistent
with prior work in physics education on differences between novices and experts [14]. This line
of work later informed the pedagogical strategy of having students describe complex systems in
terms in the form of structure-behavior-function models, which promoted deeper understandings
of the system as a whole [141].

In a similar fashion, a substantial body of work on engaging students in designing hyperme-
dia and multimedia systems (e.g., [23, 89, 100]) indicates that engaging primary and secondary
students in learning through design activities can support higher-order cognitive skills needed to
effectively contribute to complex projects. Lehrer offers an example of how secondary American
history students took on a more active role in their education when given the opportunity to de-
sign systems that reflected their knowledge [95]. Liu studied how hypermedia authoring impacted
primary students’ higher-order thinking and found that the kinds of skills practiced during de-
sign activities contributed to students’ holistic growth as learners [99]. In particular, they note
that situating skills such as planning, critical reflection, and collaboration within design activities
may help students learn to value these skills more highly, which may contribute to success in later
project-based education.

Further, design activities in STEM education can promote student engagement and create a
more inclusive classroom culture. Kafai’s line of work on constructionist learning through design-
ing games [82] aims to help students engage more deeply with STEM concepts. Early on, Kafai
et al. explored using game design activities to promote mathematical learning and found that both
students and educators who engaged in design practices created higher-quality games, thought in
more principled ways about the topic of instruction, and better leveraged their real-world knowl-
edge bases to understand mathematical concepts [80]. They later framed constructionist educa-
tional game development as a way of enabling early ownership and participation in digital culture
[81]. Others have highlighted the potential for equitable education that arises from design-based
instruction. After implementing their LBD approach in middle school science classrooms, Kolodner
et al. found that LBD activities helped build a classroom culture in which students of diverse back-
grounds and motivations were more comfortable engaging with scientific concepts, often showing
evidence of improved learning outcomes compared to control classes [91].

Overall, much of the work concerning design in STEM education uses design as a means to
enable learning of other, non-design-related concepts. While this literature presents many valuable
insights into how educators can leverage design for use in their classes, using design as a tool to
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promote understandings of STEM topics is not the same as investigating the teaching and learning
of embedded disciplinary design skills. Compared to architecture or engineering design education,
relatively little prior work in STEM education positions its main goals as attempts to establish
how design manifests in discipline-specific design education (e.g., studying the forms of design
that exist in primary and secondary math or science classrooms). In this article, our goal is to
understand the nature of design itself in computing education, not necessarily how design activities
can be used to better impart computing proficiencies.

3.4 In Computing

Computing education research is a young discipline. As a result, we do not yet have an established
subarea for disciplinary design education research (analogous to architecture or engineering de-
sign education research). Software engineering research provides some insights into the nature of
design’s role in computing practice. For instance, software professionals often encounter design-
related challenges in practices such as requirements elicitation [1] and interface creation [115].
These challenges may be compounded by the often blurry boundaries between the software de-
sign and software implementation. Unlike more traditional fields in which designers work with
physical media like wood or metal, software designers work with code and are not limited by the
constraints of physical material (load-bearing capacities, conductivity, etc.) [115]. These unclear
distinctions lead to software development processes in which activities of defining and imple-
menting requirements are tightly, iteratively coupled, such as Boehm’s spiral model of software
development [13].

A small but rapidly growing focus on education exists in human-computer interaction (HCI)
literature, studying in part how computing students learn the design skills needed to create us-
able, useful software interfaces. This body of work has identified many practical challenges of
teaching and learning HCI. For instance, it is often difficult to reliably engage students in HCI
classes [72, 103, 119], especially when they view the course content as “inessential” [27], “easy,”
or “commonsense” [49]. HCI educators also find it difficult to assess students’ design work [16,
136, 148], perhaps due to a lack of pedagogical content knowledge for design-related HCI top-
ics [110, 111]. Overall, however, Lewthwaite and Sloan found that there is no agreed-upon ped-
agogy for teaching HCI principles and that most HCI education work “comprise[s] of teachers’
reflections on their own practice and course design” [97], making it difficult to synthesize a gen-
eralizable notion of design in HCI from existing literature. Given that HCI education faces a
time crunch in already overcrowded computing curricula [27, 63], educators must prioritize some
topics and exclude others, but there is no agreement on what the core topics of HCI even are
[61].

Though software engineering work describes many challenges developers face that involve dis-
ciplinary design, it does not necessarily provide the clarity required for computing educators to
teach software design skills effectively or to know how students will respond when learning them.
Similarly, HCI education work excels at identifying challenges that exist in design-related comput-
ing education, but it also appears to lack unified notions around the role of design in computing
education contexts. The goal of this article is to help establish this much-needed clarity so that
educators and researchers can address these challenges and create more precise, useful, and effec-
tive curriculum and pedagogy. Recent work from Wilcox et al. noted the lack of existing insights
into the nature of design in higher education HCI instruction and called for further educational
research to untangle the nature of design in supporting computing learning [144]. We hope to
build upon this work by providing additional insights into the role of design in K-12 computing
education, which has not yet been analyzed through a design lens, and proposing a conceptual
taxonomy of design in computing that may be useful at all levels of instruction.

ACM Transactions on Computing Education, Vol. 21, No. 1, Article 2. Publication date: December 2020.



2:10 A. Oleson et al.

4 STUDY 1: WHAT IS THE NATURE OF DESIGN AND COMPUTING’S OVERLAP IN
K-12 EDUCATION?

To begin building an understanding of how design skills manifest in computing education con-
texts, we performed a deductive qualitative analysis [113] on three sets of popular K-12 computing
curricula and standards. We examined the learning objectives from each curriculum for the pres-
ence of the five core design skills from the literature described in Section 2.2. We chose to analyze
the curricula and standards at the learning objective level because learning objectives and skills
represent similar granularities: achieved learning objectives imply proficiency in certain skills.
Computing education learning objectives that imply proficiency in design-related skills may re-
veal connections between design and computing and help us to understand the nature of the two
disciplines’ intersection.

4.1 Sampling Rationale: Typical Cases

To select the sets of learning objectives, we employed Patton’s group characteristics (typical cases)
sampling strategy [113] to identify curricula and standards that might be representative of many
K-12 students’ computing education. This resulted in three sets of learning objectives from the
following sources:2

• The CSTA K-12 CS Standards [32] list what competencies primary and secondary students
should have to claim computing proficiency. Most recently updated in 2017, these standards
have informed many introductory computing curricula in multiple countries [47, 112].

• Code.org’s CS Discoveries curriculum takes a self-proclaimed “wide lens on [CS] by cover-
ing topics such as programming, physical computing, HTML/CSS, and data” [28]. Freely
available online, these materials are designed for early secondary education.

• The AP CS Principles course for late secondary education helps students gain familiarity
in basic computing concepts, regardless of whether they intend to major in computing in
post-secondary education. A record 70,000 students took the AP CS Principles end-of-course
exam in May 2018 [30].

Many nations engage in discourse around the boundaries and core concepts of computing ed-
ucation. For instance, the United Kingdom, Australia, and Korea have all participated in the de-
velopment of primary and secondary computing education standards and curricula, along with
numerous other countries. Since it was not feasible to study all the primary and secondary com-
puting curricula that exist, we necessarily had to scope our analysis. For this initial study, we chose
three sets of learning objectives developed primarily for U.S.-centric learning contexts, which may
limit the generalizability of the findings. Nonetheless, these learning objectives are representative
of many students’ computing educations. A 2019 report on the status of computer science educa-
tion policy in the U.S. indicated that 39 of the 50 states had adopted CS standards for education
[29]. The standards states adopted were almost always informed by the CSTA standards. As men-
tioned before, tens of thousands of students take the AP CS Principles exam each year, and more
than 100,000 teachers have participated in Code.org’s CS Discoveries professional development
program to date. Because of this, we feel that the three chosen sets of objectives are sufficient
for this exploratory investigation. Future work should apply this mode of analysis to other coun-
tries’ objectives and standards in order to deepen our understanding around the role of design in
computing education in global contexts.

2Each of the three sets of learning objectives for Study 1 were collected on January 24, 2019, from the sources found in

the references. Our analysis reflects the published materials at that time and does not cover updates between the time of

analysis and the time of publication (such as Code.org’s recent rework of the CS Discoveries Design Process unit).
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4.2 Analysis of Learning Objectives

To ensure that our analysis encompassed as many diverse, relevant perspectives as possible, we
had three individuals with varying backgrounds analyze the learning objectives for the presence
of design skills. All analysts were either researchers or educators at a large, public, U.S.-based
university. They were:

• The first author, a computing education researcher with 5 years of research experience in
HCI and design methods at the time of analysis, including 2 years researching the overlap
of design and computing education.

• A CS educator with 9 years of experience teaching secondary and post-secondary CS in the
U.S. and significant experience designing primary and secondary CS curricula and mapping
them to standards. After performing their analysis, the CS educator became interested in
the project and joined the research team, becoming the second author.

• A design educator with 4 years of experience teaching design (including interaction design)
in the U.S. at the post-secondary level and 7 years of experience as a practicing industrial
and architectural designer.

The analysts’ diverse backgrounds are essential to understanding the nature of the intersection
of design and computing. To achieve robust and reliable understanding, it is necessary to (attempt
to) surface all possible connections between design and computing from as many relevant perspec-
tives as possible. This goal would not be possible if the analysis consisted of three similarly trained
individuals identifying connections: they would likely miss important relationships between the
two fields due to their limited scope of expertise. Correspondingly, our goal for this deductive
analysis was not to reach inter-rater agreement (a metric often used to evaluate the consistency of
qualitative judgments). Instead, consistent with the view of qualitative work presented by Ham-
mer and Berland [64], we hoped to gain a holistic view of the role of design within computing
from many relevant perspectives and surface multiple diverse interpretations.

Each analyst performed their mapping independently. We provided analysts with detailed de-
scriptions of each design skill similar to those presented in Section 2.2. For each computing learning
objective, we asked analysts to determine which (if any) design skills they felt were represented
in the objective, allowing for multiple skills to be represented in a single objective. We also en-
couraged analysts to apply their individual expertise when determining which learning objectives
mapped to each skill. After each analyst completed their work, the first two authors (who were
also two of the three analysts) examined the results for patterns.

4.3 Results

4.3.1 Design Skills in Computing Learning Objectives. In total, the analysts examined 384 learn-
ing objectives for the presence of core design skills.

As intended, the analysts surfaced diverse interpretations of which computing learning objec-
tives contained design components. For example, the CS educator interpreted any objective that
involved creating a digital artifact or developing a computer program as aligning to the Creative
Ideation, Evaluation & Synthesis, and Iterative Improvement skills, as, in their experience, these skills
are inherently exercised in the process developing a program or digital artifact. The computing ed-
ucation researcher took a more conservative stance due to their prior knowledge of both design
and computing, leading to fewer overall identified instances of design in their results. The design
educator identified some learning objectives as falling under a sixth skill they named Analysis and
Synthesis of Information. After the design educator discussed the rationale behind their choice with
the other two, the analysts slightly revised the descriptions of the original five core design skills to
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clarify language around analysis and synthesis (though they elected to retain only the five exist-
ing design skills from the literature) and audited their analyses against the new descriptions. The
results presented below reflect the audited analyses.

Some learning objectives did not seem to imply any of the five core design skills, indicated by a
lack of design skill codes by any analyst. As might be expected, these were often the most obviously
computing-focused objectives, encompassing skills typically ascribed to traditional computer sci-
ence. Many of these objectives revolved around basic familiarity with computing concepts, such
as “Define an algorithm as the series of commands a computer uses to process information” (Code.org
1.6) or “Store, copy, search, retrieve, modify, and delete information using a computing device and de-
fine the information stored as data.” (CSTA 1A-DA-05). Other learning objectives that did not seem
to contain design skills were more engineering focused, often simply asking students to imple-
ment programming constructs, such as “Create and link to an external style sheet” (Code.org 2.10),
“Create procedures with parameters to organize code and make it easier to reuse” (CSTA 2-AP-14), or
“Create and modify an array” (Code.org 6.10).

The classification of many learning objectives was more ambiguous. Two modes of conflicting
agreement surfaced in the objective analyses, delimited by how they manifested in the coding
results. (These two types, by their definitions, make up the entirety of analysts’ disagreement.) One
kind of conflict occurred when some analysts identified design in an objective though others did
not. The most common form of this was the design educator and the computing educator agreeing
that an objective contained particular design skills while the computing education researcher did
not. In particular, the two educators took a broader stance than the researcher on what kinds of
learning goals implied Understanding the Context and Communication skills. For instance, both
educators saw UtC and Comm in objectives like “Explain the beneficial and harmful effects that
intellectual property laws can have on innovation” (CSTA 3A-IC-28) and “Explain characteristics of
the Internet and the systems built on it” (AP CS P 6.2.1). The computing education researcher did
not see design skills in these objectives, conservatively interpreting them as asking students to
relay information they had read or heard. A second type of conflict occurred when all analysts
indicated there was some kind of design within an objective but disagreed on which particular
design skill(s) it contained. For example, each analyst mapped “Develop a correct program to solve
problems” (AP CS P 5.1.2) to three design skills. The design educator mapped the objective to UtC,
CI, and ES; the computing educator to CI, ES, and II; and the computing education researcher to UtC,
II, and Comm. This learning objective’s description contained examples of what students might
do to achieve the objective, though it appears that the analysts all interpreted these examples
differently and focused on different aspects. Similar patterns occurred throughout the analysts’
results in all three curricula. The two kinds of disagreement surfaced by the analysis highlight the
importance of including many diverse perspectives in our initial attempts to understand the nature
of discipline-specific computing design. Similarly trained analysts (e.g., three computing education
researchers) might have missed some of these connections between the two fields, overlooking
important aspects needed to gain a complete understanding of the design’s role in computing
education.

Despite these conflicts, the three analysts did agree that some computing learning objectives
contained specific design skills, indicated by all analysts agreeing on a single skill code. To fulfill
the learning objectives that correspond to the following themes, computing students likely must
take on design roles.

Situating Choices in the Real World (UtC). All three analysts marked that learning objec-
tives such as “Identify existing cybersecurity concerns and potential options to address these issues
with the Internet and the systems built on it” (AP CS P 6.3.1) and “Explain the connections between
computing and real-world contexts, including economic, social, and cultural contexts” (AP CS P 7.4.1)
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corresponded to the design skill of Understanding the Context. Similarly, learning objectives like
“Recommend improvements to the design of computing devices, based on an analysis of how users in-
teract with the devices” (CSTA 2-CS-01) and “Systematically design and develop programs for broad
audiences by incorporating feedback from users” (CSTA 3A-AP-19) indicate that students should be
able to involve stakeholder perspectives in the process of creating their software. Learning ob-
jectives about contextualizing computing tended to occur in units about web development and
game development/animation (Code.org), lessons about global impacts of computing and problem
analysis (AP CS P), and standards about networks and the Internet or computing systems (CSTA).

Generating Ideas (CI). The analysts often found the design skill of Creative Ideation in ob-
jectives corresponding to generating many creative ideas or coming up with new concepts. For
instance, deceptively simple objectives like “Design the user interface of an app” (Code.org 4.7) and
more complex objectives such as “Create a new computational artifact by combining or modify-
ing existing artifacts” (AP CS P 1.2.2) suggest that students should be able to generate creative,
novel ideas for their software. Many objectives falling under this theme explicitly involved brain-
storming as well, such as “Brainstorm ways to improve the accessibility and usability of technology
products for the diverse needs and wants of users” (CSTA 1B-IC-19) and “Brainstorm potential solu-
tions to a specific problem” (Code.org 4.6). Learning objectives involving generating ideas tended to
occur in units about problem solving and user-centered design (Code.org), in lessons on creating
computational artifacts (AP CS P), and in standards about algorithms and programming (CSTA).

Critiquing and Evaluating Tradeoffs (ES). Students learning computing with these objec-
tives are expected to be able to evaluate how well software meets given or discovered constraints.
The analysts unanimously identified Evaluation & Synthesis learning objectives like “Test and refine
computational artifacts to reduce bias and equity deficits” (CSTA 3A-IC-25), “Analyze the correctness,
usability, functionality, and suitability of computational artifacts” (AP CS P 1.2.5), and “Critique a
design through the perspective of a user profile” (Code.org 4.2). Notably, computing learning ob-
jectives in the analyzed sets often expected students to evaluate the tradeoffs implicit in design
choices, such as “Compare tradeoffs associated with computing technologies that affect people’s ev-
eryday activities and career options” (CSTA 2-IC-20), “Evaluate computational artifacts to maximize
their beneficial effects and minimize harmful effects on society” (CSTA 3B-IC-25), and “Consider
the needs of diverse users when designing a product” (Code.org 6.15). Learning objectives involv-
ing critique and evaluation tended to occur in units on data and society or user-centered design,
(Code.org), lessons involving analysis of artifacts (AP CS P), and standards about the impacts of
computing or algorithms and programming (CSTA).

Incrementally Updating Software (II). Some learning objectives very obviously implied the
design skill of Iterative Improvement. For example, analysts mapped objectives such as “Use an iter-
ative process to plan the development of a program by including others’ perspectives and considering
user preferences” (CSTA 1B-AP-13) and “Iteratively improve upon a system for representing infor-
mation by testing and responding to feedback” (Code.org 5.2) unanimously to II. The analysts also
saw iteration inherent in broader objectives like “Apply a creative development process when creat-
ing computational artifacts” (AP CS P 1.1.1). Learning objectives involving incremental updates to
systems tended to occur in units about problem solving or data and society (Code.org), in lessons
involving abstraction (AP CS P), and in standards about algorithms and programming (CSTA).

Working with Others (Comm). The need to communicate with peers surfaced in two main
ways throughout each set of learning objectives. First, many objectives expected productive team-
work, evidenced in objectives like “Communicate and collaborate with classmates in order to solve a
problem” (Code.org 1.1) and “Collaborate in the creation of computational artifacts” (AP CS P 1.2.4).
Second, some objectives implied the need to become proficient at presenting and documenting
design rationales, such as “Communicate the design and intended use of program” (Code.org 4.10)
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and “Explain the design choices they made on their website to other people” (Code.org 2.14). This
second category of Communication is reminiscent of design specifications—documents drafted
by designers that contain requirements for developers and engineers to implement (or for man-
agers to approve). Occasionally the two categories overlap: “Describe choices made during program
development using code comments, presentations, and demonstrations” (CSTA 1B-AP-17) includes
both within-group communication (code comments) and external communication (presentations).
Learning objectives involving working with others were common throughout each set of learn-
ing objectives. They tended to occur in units about human-centered design and web development
(Code.org), lessons involving communication and collaboration (AP CS P), and standards about
the impacts of computing, data analysis, and algorithms and programming (CSTA).

4.3.2 Types of Design within Computing Education. While examining the results of the design
skills analysis, the first and third authors observed that there seemed to be more than one distinct
type of design represented in the computing learning objectives. The first author performed pre-
liminary affinity diagramming on the learning objectives that the original analysts identified as
containing design skills to identify higher-level categorizations. Further collaborative discussion
and refinement of the categories with all authors revealed the following two types of design.

Problem-Space Design: The “What” and the “Why.” Problem-space design in computing
answers the questions “What will this software do (or enable users to do) in the context of the
world?” and “Why does the world need this software?” This form of design involves identifying,
defining, and evaluating requirements for what an artifact is and what it should be able to do.
The goal of problem-space design is to propose a solution to a particular problem that takes into
account the constraints of the context as well as the views and requirements of stakeholders. In
industry, requirements that reflect the problem space are generally created by project managers,
product managers, or interaction or user experience (UX) designers. On the other hand, learners
in computing education contexts typically lead their own projects or work with small teams. As a
result, many students practice problem-space design to an extent. The learning objective “Brain-
storm ways to improve the accessibility and usability of technology products for the diverse needs and
wants of users” (CSTA 1B-IC-19) seems to involve only problem-space design, situating software
requirements in the real world by expecting students to justify why certain software doesn’t meet
user needs and what that software might look like instead. Computing students might also prac-
tice problem-space design when they engage in work to define and update high-level software
requirements, evaluate the fit of software against real-world constraints, or present their design
rationale to peers or instructors.

Program-Space Design: The “How.” Program-space design answers the question “How
should the available tools and resources be used to effectively implement this software?” This
form of design involves deciding how to meet requirements that result from problem-space design
activities. Selecting the proper algorithms, data structures, and function calls to generate desired
behavior are examples of program-space design. This kind of design is most often seen in soft-
ware engineering and programming practices. In computing education, students writing code to
meet requirements engage deeply in program-space design. Many of the objectives that seemed
to involve only program-space design mirrored basic program design and software engineering
skills (e.g., “Develop an algorithm for implementation in a program” (AP CS P 4.1.1)). Students could
also practice program-space design without writing code, such as in “unplugged” activities where
they create algorithms to solve problems. In this learning objective, students are not expected to
justify what they are making or why they should address the given problem with an algorithmic
approach: they are only expected to choose how to implement the algorithm so that it fits given re-
quirements, though the choices they make while doing so still imply design decisions. Computing
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students might also practice program-space design when they decide which kinds of program-
ming constructs to use in a program (e.g., conditionals vs. loops) or when they define and adhere
to programming style guidelines to help communicate with teammates.

Interestingly, some learning objectives seemed to imply both problem- and program-space de-
sign practices. For instance, “Iteratively improve upon a system for representing information by test-
ing and responding to feedback” (Code.org 5.2) seems to involve the problem-space skill of test-
ing with users and applying feedback to refine higher-level what and why requirements. It also
seems to imply program-space design in the iterative improvement of the program’s code-level
implementation to refine how the system works. The existence of this ambiguous space between
problem- and program-space design might be one reason the role of design has traditionally been
so unclear and why (as suggested by our analysis in this section) it can be difficult to clearly iden-
tify. while program-space design might be considered an inherent, disciplinary form of design that
exists within computing, problem-space design shares more characteristics with the discipline of
design than it does with computer science or software engineering.

5 STUDY 2: HOW DO PROBLEM- AND PROGRAM-SPACE DESIGN MANIFEST IN
K-12 COMPUTING EDUCATION ACTIVITIES?

The results of Study 1 suggest that the nature of design and K-12 computing education’s overlap
is characterized by two distinct kinds of design: problem-space design, in which students discover
and define problem requirements, and program-space design, in which students decide the most fit
way to meet the discovered constraints. These dual roles of design arose from analysis of learning
objectives that imply certain computing proficiencies. However, what if learning objectives that
contain design are simply ignored in practice? What if the curricula and standards we analyzed
do contain design, but the design work is not instantiated in classroom activities? If the activities
computing students participate in don’t actually have design components, then the practical need
for clarity around design and computing education’s overlap becomes less pronounced. To ad-
dress this possibility, we conducted a second deductive qualitative analysis on three sets of student
activities from three K-12 computing education curricula.

5.1 Sampling Rationale: Confirming and Disconfirming Cases

To select the curricula for Study 2’s analysis, we employed a confirming and disconfirming cases
sampling strategy [113], as well as selecting another typical case for adequate coverage.3

• Code.org’s CS Discoveries [28] acts as our confirming case. In Study 1, we analyzed CS Dis-
coveries’ learning objectives for design skills; We should expect those design skills to be
instantiated in the curriculum’s student activities.

• The AP CS A course [31] acts as our disconfirming case, insofar as that is possible. In con-
trast to AP CS Principles’ broad goal of increasing participation in computing, AP CS A is
designed to mimic a university-level introductory programming course. Upper-level sec-
ondary students who take AP CS often intend to major in computer science in postsec-
ondary education and can receive CS1 credit by passing the AP CS A exam. Due to the
more technical focus of the course, we can expect its design-related activities to be more
like discipline-specific design (program-space) than nondisciplinary (problem-space) de-
sign, potentially also occurring at a lower frequency than the other two cases.

3The Code.org CSD materials were the same as Study 1 for consistency and were collected on January 24, 2019, from the

sources found in the references. The AP CS A and Exploring CS materials were collected on June 26, 2019. As before, our

analysis reflects the published materials at that time and does not cover updates between the time of analysis and the time

of publication.
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• Exploring Computer Science [50] was selected as another typical case in order to ensure our
analysis would encompass representative material. Exploring CS is a year-long, research-
based curriculum intended to teach introductory computing concepts through inquiry-
based activities in late secondary education. As of 2018, more than 50,000 students in 25
U.S. states and Puerto Rico had learned computing through the Exploring CS curriculum.

Exploring CS had explicitly labeled student activities within the lesson plans upon which we based
our analysis. CS Discoveries also had labeled activities for the majority of their lesson plans; for
the lessons that did not contain one or more explicitly labeled activities, we considered the entire
lesson a single activity. The AP CS A course description provided sample instructional activities at
the beginning of each unit. Though these were from the point of view of the teacher, they described
students’ activities, so we were able to use them in our analysis. Of note, the AP CS A curriculum
guide did not provide sample activities for every lesson, which limits the findings of our analysis
to a strict subset of all AP CS A student activities.

5.2 Analysis of Student Activities

Two analysts took part in the analysis of design in student activities:

• The first author, the computing education researcher whose expertise is described in Study 1
(Section 4)

• The third author, a researcher and educator at a large, public, U.S.-based university with
10 years of experience in computing education research, 10 years of software engineering
research and teaching, and 15 years of HCI + design research and teaching

The first author used a deductive process to qualitatively analyze each student activity for the pres-
ence of design based on the two types of design in computing uncovered in Study 1 (Section 4.3)
and the skills of design identified in the literature (Section 2.2). Each student activity could be
marked with anywhere from 0 (if no design were present) to 10 (5 problem-space design skills +
the same 5 program-space design skills) codes. As before, the first author tended toward conser-
vative interpretations of the student activities, relying on each activity’s explicit accompanying
text and descriptive materials to determine the presence and flavor of design. They also memoized
each code with selection rationale.

To establish validity, the third author independently analyzed the student activity sets and
marked codes upon which the two analysts disagreed, memoizing their rationale in a short com-
ment. Then, the two analysts met to discuss discrepancies in their results and decide upon final
categorizations. As mentioned in Section 4, we adhere to the perspective on qualitative coding pre-
sented by Hammer and Berland [64], treating the results of deductive coding as organizations of
claims about data rather than quantitative data in themselves. As a result, collaborative discussion
about disagreements led to refinement of the codeset. During their discussion, the two analysts
noted the following major patterns in their disagreement:

• Applications of the Understanding the Context skill code for both problem- and program-
space design differed based on whether one considered information gathering outside of the
context of any particular problem to be a design activity (e.g., “Groups of students create
lists of their ideas of what a computer is,” ECS 1.1). Analysts decided that an activity should
only be coded as UtC if there was a specific, defined problem the student was trying to
solve, as opposed to discussing problems in general.

• Applications of various program-space codes differed based on whether one considered
“unplugged” activities (which teach computing concepts without programming or comput-
ers) to be program-space or problem-space activities. After reviewing and discussing the
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definitions of problem- and program-space design, the analysts decided that program-space
design work did not necessarily imply writing code and that unplugged activities could
include program-space design.

• Applications of program-space Evaluation & Synthesis codes differed based on whether one
considered critiquing tradeoffs of software created by an external person or entity to be a
design activity in itself. Based on design literature, analysts decided that any evaluation of
code for fitness to a certain constraint should be considered program-space ES.

• Applications of the Evaluation & Synthesis codes during presentation-based activities (e.g.,
ECS’s gallery walks) differed based on how conservative the one was with their inference
of activities. Analysts decided to limit their inference of activities and apply codes based
only on the text of activity descriptions and supporting materials.

• Applications of program-space Iterative Improvement codes in debugging-focused activities
differed based on whether one considered “improvement” to require implementing changes
or simply proposing them. After discussing the core design skill definitions, analysts de-
cided that debugging activities should have students actually implement changes to count
as program-space II codes.

The two analysts collaboratively updated their final results to address these conceptual discrepan-
cies. These clarifications also served to refine the definitions of the design skills and types of design
in computing presented in this article. The first author then analyzed the results for patterns and
themes.

5.3 Results

5.3.1 Characterization of Cases. Table 1 summarizes the types of design skills that appeared in
student activities by each unit of the three curricula.

As expected, the majority of Code.org CS Discoveries (CSD) activities included design: the an-
alysts marked 100 of 150 activities as containing at least one skill of design. Of those 100, 52 only
contained evidence of problem-space design skills, 37 contained only program-space design skills,
and 11 contained both problem- and program-space design skills. In the Code.org CSD activities,
problem- and program-space design practices were often tightly interleaved. As students created
computational artifacts, they typically decided what they wanted to create and defined require-
ments for their artifact (problem-space design), then decided the most fit way to meet those con-
straints with programming or algorithmic constructs (program-space design), and finally imple-
mented their plan. Frequently, the design work in both spaces was scaffolded by provided project
guides that led students through activities like brainstorming, storyboarding, algorithm creation,
and selection of programming constructs. Students often also justified their design rationale in
both design spaces during peer review or formal presentations.

Design did surface in the AP CS A activities, much to the analysts’ surprise. Notably, design
practices in AP CS A were limited to the program-space: out of the 36 activities, 29 contained
program-space design, and none contained problem-space design. In software engineering termi-
nology, students were often asked to come up with strategies to meet requirements, but they were
never asked to define those requirements themselves. Generally, the program-space design activi-
ties centered around generating algorithms that fit certain given constraints (Creative Ideation) or
analyzing programs for correctness or equivalence (Evaluation & Synthesis). Students occasionally
worked in pairs and communicated their program design rationale as well.

Of the 288 Exploring CS activities, the analysts identified 96 that contained design: 46 problem-
space only, 43 program-space only, and 7 containing both problem- and program-space design
skills. Similar to the Code.org curriculum, Exploring CS activities often interleaved problem-space
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Table 1. The Kinds of Design Skills That Appeared in Study 2’s Analyzed Computing

Education Student Activities

Problem-Space Design Program-Space Design

UtC CI ES II Comm UtC CI ES II Comm

Code.org CSD

Problem Solving � � � � � � �
Web Development � � � � � � �
Interactive Animation and Games � � � � � � � � �
The Design Process � � � � � � � � �
Data and Society � � � � � � �
Physical Computing � � � � � � � � � �

AP CS A

Primitive Types � �
Using Objects � �
Boolean Expressions and “if” Statements � � � �
Iteration � �
Writing Classes �
Array � � �
ArrayList � � �
2D Arrays � �
Inheritance � �
Recursion � �

Exploring Computer Science

Human Computer Interaction � � � �
Problem Solving � � � �
Web Design � � � � � � � �
Introduction to Programming � � � � � � � � �
Computing and Data Analysis � � � �
Robotics � � � � � � � �

The leftmost column contains the names of units within each curricula. A checkmark (�) indicates both analysts agreed

that particular design skill appeared at least once in the unit’s activities. Notably, the AP CS A curriculum activities did

not seem to contain problem-space (nondisciplinary) design, though all kinds of program-space (disciplinary) design

skills were represented.

design and program-space design. Peer review, critique, and feedback (in both design spaces) were
especially common in Exploring CS activities. Students often justified their design rationale and
implementation choices to at least their teammates, if not the larger class. Often, they were asked
to synthesize problem-space-level feedback from users or peers into program-space design choices,
then implement the results to incrementally improve their computational artifacts. Exploring CS
activities also supported problem-space Creative Ideation very well by providing brainstorming
guides where students wrote down multiple approaches to solving a problem with computational
artifacts, selected one, and justified their selection before they implemented it.

5.3.2 Non-design Activities. In activities where students were not actively solving a problem,
they did not practice design. Often, these took the form of simple identification exercises such as
“For each [provided code] segment, have students trace through the execution of a loop with smaller
bounds to see what boundary cases are considered, and then use that information to determine the
number of times each loop executes with the original bounds” (AP CS A 4.5). Non-design activities
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might also involve students simply manipulating data without necessarily having a higher-level
goal in mind, such as in “Groups create bar and mosaic plots with the data they have collected and
additional contextual data sets” (ECS 5.8). In the case of this last activity, the goal of the lesson was
to have students become familiar with different types of plots, not to have them use those plots for
any analysis. Similarly, some activities simply asked students to learn about general programming
constructs and did not require application of that knowledge to solve a particular problem. For
instance, the Code.org CSD activity “Web Lab: Intro to CSS” (Code.org 2.10) led students through
a guided tutorial on how CSS can be used to change the appearance of HTML websites. While
students would later use their knowledge of CSS to style their own web pages, this specific activity
did not ask students to make design decisions—only to implement CSS styles as directed.

5.3.3 Exclusively Problem-Space Design Activities. The two analysts found instances of stu-
dent activities containing only problem-space (nondisciplinary) design in both the Code.org CSD
and Exploring CS curricula. When students perform these activities, they are working to de-
fine the “what” and the “why” of their artifact: motivating its existence and defining high-level
requirements for its implementation. Problem-space design activities appeared in every unit of
the Code.org CSD and ECS curricula, with most instances occurring in user-centered design
(Code.org), human-computer interaction, and data analysis (ECS) units. Below, we present some
themes that arose from final analysis results and indicate which of the five core design skills (Sec-
tion 2.2) the group of activities tended to correspond to.

Research to Motivate Artifact Creation (UtC and ES). One way in which problem-space
design manifested in the activities was through information gathering used to situate whatever
computational artifact students planned to create in real-world contexts. Sometimes this took the
form of user research, as in activities from Code.org’s user-centered design unit: “Looking through
a user’s eyes” and “Responding to products” activities (both Code.org 4.2) asked students to take the
perspectives of different users to evaluate an existing product. After doing so, students identified
opportunities for improvement in the existing products’ designs. Another form this information
gathering could take was market research and data analysis. For instance, in the activity “Brain-
storming app ideas” (Code.org 4.9), students analyzed applications already on the market to see how
they addressed certain problems, then came up with an app idea that would differ from already-
existing solutions. At other times, students sifted through data to characterize problems, as in the
activity “Groups do statistical analysis with mean, median, maximum, and minimum using the data
they have collected and additional contextual data sets” (ECS 5.10). ECS groups later used this data
analysis to inform their final unit projects.

Requirement Generation and Refinement (UtC, ES, and II). Problem-space design activi-
ties sometimes had students come up with and iterate on requirements for artifacts they planned to
create, rather than specifying all requirements in the student materials. For instance, the “Define”
activity in Code.org’s lesson 4.3 had students perform a version of stakeholder analysis to identify
target user populations’ needs. Similarly, “Identify evaluation criteria and work in groups to eval-
uate websites using the rubric” (ECS 1.3) asked students to identify requirements for determining
the credibility of websites, then evaluate various sites against those requirements. Students later
used these initial sets of constraints to inform project requirements.

Prototyping Concepts and Interfaces (CI and ES). Both curricula in which problem-space
design appeared favored a design-before-implementation mentality, often instantiated in sto-
ryboarding and prototyping activities. Problem-space prototypes were generally low fidelity,
but all represented a concept for a final system. These systems did not necessarily have to
be technological: for instance, in the “Create a representation” (Code.org 5.8) activity, students
designed a paper punch card with categories of information they would use to represent their
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“perfect days.” However, when the system was technological, storyboarding and prototyping
activities often helped students envision user interfaces, such as in the “Paper prototypes” activity
(Code.org 4.7), where students created and tested user flows of their apps by sketching screens on
notecards. Sometimes, students were led to consider user perspectives other than their own when
prototyping: the notes for the “Create a storyboard for a multipage web site” (ECS 3.8) activity
suggest that teachers prompt their students to consider the many kinds of diverse users that
might use their website, though students are not evaluated upon this requirement.

Managing Group Expectations and Decisions (Comm, CI, and ES). When doing group
work, teams often practiced communication around problem-space design decisions and how their
group would meet particular design requirements. Both the Code.org CSD and Exploring CS cur-
ricula contained some form of team management activity such as “Groups discuss roles and re-
sponsibilities” (ECS 5.3) and “Team contract” (Code.org 4.8). These kinds of activities focused on
how the team would effectively work together to create a final computational artifact. Sometimes
groups worked together to generate a single set of design requirements, such as in “Building an
Aluminum Boat” (Code.org 1.1), where teams came up with different ways to create boats from
aluminum foil that would float in water when weighed down with coins. Other times, teams had
to come to a consensus on which requirements to prioritize and implement. For instance, teams
came into the activity “Groups work to merge individual data sets together” (ECS 5.1) with data they
had individually collected (with no particular constraints on how to categorize it) and were asked
to merge the data sets together. In doing so, groups had to agree upon which dimensions of their
disparate data sets to change so that the data in the final set ended up at the same granularity,
which inherently involved making decisions about what data was important. Other times, team
consensus building happened in response to feedback: using the results of “User Testing” (Code.org
4.11), teams discussed and prioritized feature implementations and bug fixes. Problem-space com-
munication underlies all these activities and helps students to successfully create artifacts while
working with teams.

Justifying Problem-Space Design Choices (Comm). Finally, when practicing problem-space
design, students were often asked to justify why their solution fit a particular problem. Note that
this is different than discussing how they implemented their solution (which would represent
problem-space design justification). For example, in the “Student teams present projects” (ECS 1.2)
activity, pairs of students worked together to explain their rationale for giving a particular user a
specific computer hardware configuration (based on the fictitious person’s typical usage patterns).
During the “Presentation prep” and “Presentations” (both Code.org 4.16) activities, students wrote
up and presented thorough design specification documents, including their problem motivation
and framing, existing solutions and their shortcomings, examples of how their artifact addressed
these shortcomings, and their user testing refinement process.

5.3.4 Exclusively Program-Space Design Activities. Instances of activities containing only
program-space (disciplinary) design appeared in all three curricula. When students perform these
activities, they determine the “how” of their artifact: given some problem-space constraints, how
at the algorithmic level those constraints should be implemented. Program-space design activities
occurred in every unit of the Code.org CSD and AP CS A curricula, though it was absent from
two units of the Exploring CS curriculum (human-computer interaction, and computing and data
analysis).

Understanding Programming Environment Affordances (UtC). Students often worked to
understand the kinds of functionality they had available to them before they began to implement
their artifacts. This is different than simply learning about programming language constructs (e.g.,
for loops or arrays), which are general concepts that underlie all programming practice. Instead,
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students exercising this kind of program-space design skill learn about unique features that are not
necessarily transferable to other programming environments. For instance, in activities like “Intro
to Sprites” (Code.org 3.6) and “The Draw Loop” (Code.org 3.7), students explored the functionality
of Code.org’s Game Lab platform. Later, they used their knowledge of Game Lab’s affordances to
create interactive animations and games. Similarly, in the “AppLab exploration” (Code.org 4.10) ac-
tivity, students explored implemented apps in the AppLab environment in order to understand the
functionality available to them. In the “Pairs investigate features of Scratch and start name assign-
ment” (ECS 4.1) activity, students experimented with Scratch blocks to figure out what they could
accomplish within the environment. Each of these activities is a form of the program-space skill
of Understanding the Context, teaching students the affordances of their specific environments or
IDEs.

Designing Algorithms and Program Behavior (CI and II). A common form of program-
space design was devising algorithms or structuring programs to fit given constraints. Sometimes,
the constraints were defined by the teaching materials and simply required iterative modifica-
tion of a base program, requiring students to figure out the best way to meet those constraints.
This occurred in activities like “Provide students with a method [with some functionality] . . . ask stu-
dents . . . to write a similar method that, given a student number as input, returns the name of a student
from a String containing the first name of all students in the class, each separated by a space” (AP CS
A 4.1-4.4). At other times, requirements were defined for students, but they had to figure out how
to meet them without a base example, as in “Develop an Age program” (ECS 4.9), where students
created a program that responded to different numerical (age) inputs in various specified ways,
and “Making music” (Code.org 6.11), where students used a physical circuit board to create audi-
ble buzz patterns. Notably, these kinds of activities did not necessarily include writing code: “In
groups, participate in the candy bar activity” (ECS 2.2) had students come up with an algorithm to
split a candy bar in the least amount of cuts. Students also practiced problem-space design when
they created code architectures that fit a particular set of design requirements, as in the activity
“Given a class design problem that requires the use of multiple classes in an inheritance hierarchy,
students identify the common attributes and behaviors among these classes and write these into a
superclass . . . ” (AP CS A 9.2-9.4).

Program Analysis and Rnement (ES and II). Students often analyzed programs for correct-
ness or equivalence. This kind of program-space evaluation activity was particularly prevalent in
the AP CS A curriculum, making up the majority of the curriculum’s design activities. In the AP
CS A curriculum, students often had to compare actual output against expected output, then pro-
pose and implement fixes to align program behavior with requirements. For example, in “Provide
students with code that contains syntax errors. Ask students to identify and correct the errors . . . [and]
have them verify their conclusion by using a compiler and an IDE that does not autocorrect errors” (AP
CS A 1.1), students identified and fixed syntax-level errors. Students also evaluated code against
requirements at the semantic level, as in “Provide students with several error-ridden code segments
containing array traversals along with the expected output of each segment. Ask them to identify
any errors that they see on paper and to suggest fixes to provide the expected output . . . ” (AP CS A
9.4). Debugging and refinement activities appeared throughout all three curricula, in activities like
“Web Lab: Smash those Bugs” (Code.org 2.8), “Enhance the variable example” (ECS 4.9), and “Test
the robot frequently and refine program and hardware” (ECS 6.10). Program analysis activities often
also asked students to determine equivalence of statements (“Provide students with a code segment
that utilizes conditional statements and a compound Boolean expression, and ask them to choose an
equivalent code segment that uses a nested conditional statement . . . ” (AP CS A 3.6)). Finally, stu-
dents participated in program-space design evaluation when comparing different algorithms: in
“Model the tower building algorithm” (ECS 2.6) and “Groups participate in the various parts of the
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CS Unplugged: Lightest and Heaviest activity” (ECS 2.7), students evaluated the tradeoffs of using
particular algorithms over others, then selected the best fit for their situation.

Justifying Implementation and Code-Level Teamwork (Comm and ES). When working
in groups, students had to communicate with others about program design decisions in order to
build functional programs. The Exploring CS curriculum almost always had students working in
pairs or groups when creating software. In the curriculum’s Intro to Programming unit, activi-
ties like “Pairs complete Map Route Activity” (ECS 4.4), “Develop Social Media Quiz program” (ECS
4.10), and “Create a timer block with a parameter” (ECS 4.14) all required students to work with at
least one partner. In doing so, students often discussed and justified their program-space design
decisions with peers. These kinds of discussions were explicitly scaffolded by project guides in
the CSD curriculum (Code.org 3.22 and 6.16), where students collaboratively decided upon pro-
gram behavior and generated pseudocode before they began implementing their solutions. Pair
programming activities were prevalent in all three curricula (e.g., “Have students use pair program-
ming to solve an array-based free-response question...” (AP CS A 6.4); “Pair programming” (Code.org
2.4)). Sometimes pair programming activities involved evaluation and critique, as in “Provide stu-
dents with the pseudocode to multiple recursive algorithms, and have students write the base case of
the recursive methods and share it with their partner. The partner should then provide feedback, in-
cluding any corrections or additions that may be needed” (AP CS A 10.1). Notably, Code.org’s CSD
activities often embedded instruction about code style best practices into students’ introductions
to programming concepts. For instance, the activity “Programming with variables” (Code.org 3.5),
students’ first exposure to variables, instructed students on and had students adhere to style guide-
lines for variable naming and commenting. Subsequent activities encouraged students to keep up
these practices in order to facilitate better within-team communication about program implemen-
tation choices. Finally, similar to the previously mentioned problem-space practice, students often
had to justify their implementation choices, describing how their solution met (or enabled them
to meet) requirements. During whole-class discussions or demo days (e.g., “Participate in discus-
sion of solutions” (ECS 2.2), “Groups present final projects” (ECS 2.9)), students often described and
defended their program-level design choices to peers.

5.3.5 Overlapping Problem- and Program-Space Design Activities. The two analysts identified
a handful of student activities in which both problem- and program-space design overlapped in
the Exploring CS and Code.org CSD curricula. Students tended to practice both kinds of design
in tight iterative cycles in activities fitting this categorization, drilling down through requirement
definition to algorithm design and finally implementation, then popping back up into a design
space to either further refine or gain new perspectives on their computational artifacts. Activities
that contained both problem- and program-space design appeared in five of the six Code.org CSD
units, with the majority in Interactive Animations and Games and Physical Computing, and three
of the six Exploring CS units, with the majority in Intro to Programming.

Understanding Existing Solutions at Multiple Levels (UtC and CI). Sometimes, students
were asked to understand both the problem and program-level design choices inherent in existing
solutions to a particular problem, both defining and ideating on requirements. For instance, at the
beginning of the Physical Computing unit, Code.org students participated in “Innovation research”
(Code.org 6.1). During this lesson, students researched existing physical computing devices and
answered questions like “What problem does it solve?” (a problem-space design question) and
“How do you interact with it?” and “How could you improve it?” (both program-space design
questions). Later, they used these findings to inform their own robot creations. Similarly, ECS
students practiced both kinds of design in “Participate in Rock Paper Scissors discussion” (ECS 4.11).
In this activity, students first worked to define the program-space requirements for a game of rock
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paper scissors, then (with help from a partner) defined a program-space pseudocode algorithm to
determine the winner of a given round of the game. Throughout both these activities, students
practiced each kind of design.

Simultaneous Evaluation in Both Design Spaces (ES and Comm). Occasionally, when stu-
dents evaluated each other’s work, they critiqued both how well the artifact fit its requirements
(program-space) and how well those requirements represented the problem at hand (problem-
space). One example of this is found in a lesson where students created interactive greeting cards
with animations: during the “Peer review” portion of the assignment (Code.org 3.14), students cri-
tiqued others’ cards. In the program space, students evaluated the implementation of the card—
ensuring that multiple properties were updated in the animation-rendering loop, that the code
was properly modularized, and so on. During the same critique, they also evaluated how well the
card met problem-space requirements, such as ensuring that it responded to multiple kinds of user
input and suggesting ideas for future problem-space requirements. Similar dual critiques occurred
in the ECS activity “A member of each group will demonstrate and explain a program modification
to their assigned gallery walk group” (ECS 6.6).

Improving Artifacts by Implementing Feedback (II and ES). When implementing feedback
from critiques and user testing, students practiced problem-space design when they synthesized
the feedback into new requirements, and program-space design when they extended the function-
ality of their artifact to meet the new requirements. The activity “Fixing bugs and adding features”
(Code.org 4.15) asked students to incrementally improve their prototypes after a round of user
testing. Bug fixes almost certainly involved program-space design to patch the code, while new
feature implementation likely included both defining requirements and writing code to meet them.
Code.org students responded to user feedback in both design spaces in multiple activities through-
out the curriculum (e.g., “Prepare [to finalize an artifact]” (Code.org 5.15), “Iterate - revise prototypes”
(Code.org 6.16)).

Project Planning and Implementation (All Skills). Finally, the overlap of problem- and
program-space design showed up most often in final project activities. Often, these projects oc-
curred at the end of a unit and were intended to showcase students’ learning as they worked in
teams to define and motivate a problem, plan the design of a computational artifact to address the
problem, then implement, test, and refine their solutions. For example, “Develop and Create Your
Own Adventure animation” (ECS 4.5) asked students to practice a wide swath of design skills. In
this activity, students worked in pairs to create a multilevel interactive adventure game. In the
problem space, pairs storyboarded their adventure before implementing it, creatively generating
requirements and discussing design rationale for their levels. In the program space, students at-
tempted to meet these requirements by implementing event handlers for user input (exactly how
they did this was left up to students to decide), evaluating and updating their code until it met the
problem-space constraints, and communicating while pair programming. Most project planning
activities also contained both forms of design, even if the actual implementation of the design
was left to a later activity. For instance, the “Unplugged: program planning” activity (Code.org 6.9)
asked students to create some sort of interactive game with physical computing hardware. The
problem-space requirement definition process was left entirely up to student groups, along with
any program-space ideations around how to respond to user input. When students implemented
their plans, they iterated on their solutions until they felt like they were ready to test it with peers,
at which point they facilitated user testing and improved their prototypes based on the results.
Another project activity “Use the planning document to plan the robot” (ECS 6.11) had students
go through a similar process to create an autonomous “search and rescue” explorer robot. Each
of these project activities had students acting as both designers and developers as they moved
through the full artifact creation process.
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Table 2. Examples of Problem-Space (Nondisciplinary) and Program-Space (Disciplinary) Design Activities

in Computing Education Contexts, Organized by the Core Design Skill They Correspond To

Problem-Space Design Program-Space Design

Why does the world need this software? How should this program be structured?

What should this software do (or enable
users to do) in the world?

How should I implement this software’s
requirements most effectively?

Understanding • Requirement generation • Learning environment affordances

the Context • User research • Understanding existing code

•Market research • Decomposing problem into modules

• Exploratory data analysis

Creative • Storyboarding • Creating algorithms

Ideation • Brainstorming possible solutions •Writing pseudocode

• Sketching and prototyping • Defining code architecture

Evaluation • Using feedback to inform requirements • Verifying correctness and equivalence

& Synthesis • Critique • Analyzing implementation tradeoffs

• Evaluating solution against constraints • Program behavior analysis

• Code reviewing

Iterative • Refining problem conception • Debugging

Improvement • Updating requirements • Refactoring code-level architecture

• Extending existing code

Communication • Presenting design rationale • Presenting implementation rationale

• Collaboratively defining requirements • Adhering to style guidelines

•Managing group roles/responsibilities • Pair programming

Each of these activities appeared in at least one of the analyzed computing curricula. While we present these activities

in two clean columns, we note that some activities may exist in the intersection of problem- and program-space design

depending how they are implemented in a particular classroom or course (e.g. “Creating algorithms” might require students

to draw both on implementation knowledge and knowledge about the world).

6 DISCUSSION AND CONCLUDING REMARKS

Our analysis in the previous sections suggests that there are design skills in many of our most
widely disseminated computing education standards and the activities that stem from them. Table 2
summarizes some of the kinds of design-related activities in computing curricula, broken down
by their alignment with the five core skills of design from Section 2.2 that served as our basis
for analysis. The skills identified include both disciplinary forms of computing-specific design,
such as devising and refining algorithms (referred to as program-space design), and skills from
the broader discipline of design, which involve understanding and situating software in the world
(referred to as problem-space design). While problem-space design activities tend to align more
with most people’s conception of general (i.e., not discipline-specific) design, program-space de-
sign activities seem closely linked to computing in a way that suggests they are more aligned with
discipline-specific computing design. As evidenced by our Study 2 results, there were also a num-
ber of computing education activities that contain both kinds of design, either simultaneously or
interleaved with each other.

As it stands, many of our K-12 computing education materials mask the presence of design
in computing education by either simply ignoring it or by claiming many design practices and
skills as computing proficiencies. However, continuing to do this might be detrimental to teaching
and learning in a number of ways. Students learning computing through design-laden curricula
may mistakenly interpret design practices as computing-specific skills. Though this is appropriate
and authentic for program-space design practices, these students would likely fail to recognize
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the existence of problem-space design and distinguish it from computing. They might then be
misled into pursuing careers in software engineering when their interests are more suited to user
experience design or product management, for instance. Educators may also suffer from a lack
of clear boundaries between design and computing, which complicates teaching. Prior work has
shown that the pedagogical content knowledge (PCK) required to teach design is meaningfully
different than the PCK required to teach computing [73, 110, 111], since PCK is domain specific [67,
127]. The PCK needed to teach problem- and program-space design might also differ in meaningful
ways. Any effort teachers spend figuring out how to teach computing skills may not transfer if the
skills they teach are, in fact, design.

If the status quo is problematic in these ways, how might this overlap be addressed? One
possibility would be to try and remove nondisciplinary problem-space design (the “what” and
the “why”) from computing education, while retaining disciplinary program-space design (the
“how”). The result of this would be a set of competencies that are solely concerned with com-
puting concepts and the design skills required to architect, plan, construct, and refine programs.
Such work, however, would be difficult, time-consuming, and likely even counterproductive to
the goal of training well-rounded computing students. As Section 5 demonstrated, many nomi-
nally computing-related learning objectives only concerned problem-space design, while others
contained both problem- and program-space skills. Pragmatically, we probably should not spend
time and resources to undo the work that has already gone into creating and defining computing
curricula.

Even if we decided to move ahead with the work of fully separating design and computing in
educational contexts, prior work suggests that aspects of problem-space design are important for
understanding how computing connects to the world. For instance, those who create software
should understand that there are differing software usage styles, and that the software they create
will almost certainly be used by stakeholders who are not like them [56, 137]. Computing liter-
acy should also extend to understanding the ethics and justice issues inherent to computing and
the impact that computational approaches can have in society [27, 123, 138]. In the same vein as
the Chilana et al. conversational programmers [26], who learn to code not to become developers,
but so that they can communicate better with developers, computing education might aim to ed-
ucate computing students who are conversational designers, able to communicate effectively with
designers in their teams and organizations.

Problem-space design skills are also often used in computing education to motivate students
to engage with computing material (see Section 1). Removing the what and why from computing
education and leaving only the how might harm interest and engagement in computing education.
While demand for all occupations is projected to grow 7% by 2026, the demand for computing-
related occupations is projected to grow by 19% [46]. If we are to have a chance at meeting the
demand for a computing-literate workforce, we cannot afford to dissuade learners early on by fo-
cusing solely on the design of programs and not on their use in the broader world. Eliminating
problem-space design might even lower the overall diversity of the computing field: prior work
suggests that situating computing within creative or design-based topics can encourage women
[51, 83, 114] and underrepresented ethnic groups [38] to engage with computing where they oth-
erwise might not.

If we can’t ignore design’s presence in computing, and since it seems counterproductive to try
and excise non-disciplinary problem-space design from computing materials, another option is
to embrace the entanglement of design and computing and attempt to better understand the two
fields’ unique intersection through further research. Given the evidence presented in this article
and the arguments presented in prior work [144], there is a meaningful interaction between de-
sign and computing education that would be well served by further scrutiny. As mentioned in
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Section 3, other fields that overlap with design have found success in this approach. For example,
by recognizing design as a distinct yet necessary part of K-12 engineering education, Crismond
and Adams created a framework of “misconceptions, learning trajectories, instructional goals and
teaching strategies that instructors need to know to teach engineering design effectively” [35]. In
architecture education, one of the earliest disciplines to recognize and study its overlap with design
education, Lawson studied how students acquire design skills in order to suggest improvements
to computer-aided design (CAD) systems [94]. A branch of research specifically studying the in-
tersection of computing education with design could produce similarly fruitful and interesting
results.

Toward this end, future work should build upon the distinctions, intersections, and opportuni-
ties identified in this article to further investigate how to effectively integrate design and comput-
ing education. Such work might reveal how design and computing interact not only in the program
space but also in the largely unexplored problem-space design of computing artifacts. For example,
studies might begin to reveal how difficulties that students face with debugging (part of program-
space design) might lead students to change their requirements (part of problem-space design), or
how constraints discovered while designing an algorithm (program-space design) reveal insights
about a program’s value in the world (problem-space). Investigating design and computing in-
tegration would also enable us to draw upon both fields’ theoretical and pedagogical bases. For
instance, Iterative Improvement, a design skill described in Section 2.2, sits squarely in this inter-
section. Researchers might ask questions like What are the most effective pedagogical strategies to
teach iteration and the notion of productive failure in computing contexts? Design education peda-
gogy could inform particular approaches to the question, while computing education work might
suggest adaptations and pitfalls specific to computing contexts, leading to unique results that in-
form about the overlap of design and computing.

Since the intersection of computing education and design is not yet well explored, understand-
ing starts with the CER community and future exploratory work. Embracing a research area that
recognizes the nuanced role of design in computing opens up many new exciting avenues of in-
vestigation. For example, what are concrete strategies to address design-related learning barriers
of students in computing education concepts (such as those recently described in our previous
work [111])? For students in computing classes who decide they are more interested in design
than computing, how should we effectively route them to design disciplines? How can learning be
structured to isolate program-space design from problem-space design? What are effective ways to
teach design-related skills like perspective taking, communication, and interpreting user feedback?
And what kinds of pedagogical content knowledge do educators need to effectively teach design
in computing contexts? There also fascinating questions about learner identity. How can explicitly
naming design’s presence in computing and teaching design skills change students’ perceptions
of the field and their roles within it? Can embracing design in computing draw more students
to the field who do not fit into traditional computer science stereotypes, as has been shown in
some prior work [38, 51, 114]? By answering these questions, we may be able to more effectively
leverage design to effectively and equitably engage diverse learners.

One of the first places the above kinds of research might appear is in curriculum and instruc-
tional design. Recognizing and identifying the presence of problem- and program-space design in
computing might require the reframing of existing materials as well as creation of new materials.
For example, existing materials that already contain design skills (such as those studied in Sec-
tions 4 and 5) may require a framing update. Resources might clearly distinguish and name both
design and computing skills within lesson plans, so that the teachers using them know how to
prepare. A potential example of this would be something similar to the tags used in Code.org’s cur-
ricula (which inform the teacher at a glance if the lesson’s material requires a physical computer,
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uses the Game Lab platform, etc.). In K-12 education, materials might even provide explicit
instruction on the role of design within computing and the two disciplines’ overlapping natures.
For instance, content creators could include more information about fields in the intersection of
design and computing and explicitly name them (e.g., “If you liked this lesson, consider careers in
interaction design”). Some of this work has already begun. Since the time of our analysis in Sec-
tions 4 and 5 (early to mid-2019) and the time of publication, Code.org’s CS Discoveries curriculum
has already modified its unit on the design process to explicitly integrate more information about
user-centered design best practices and empathy with diverse kinds of users, among other updates.

These shifts in curriculum come with their own changes to teacher preparation. Pre-service
and professional development on K-12 computing education might need to explicitly distinguish
between computing and design, sharing the concepts in this article and revealing how they play
out in classrooms. Teachers may need to learn to discriminate between computing skills and design
skills (some initial work on this topic is described in Section 3.4). They may also need to recognize
and respect the fact that students can have differing motivations for learning computing, some
of which may lead to design professions rather than computing ones. Teachers may also need to
understand that a student being proficient at computing concepts does not mean that they will
also be proficient at design concepts (and vice versa). Higher education faculty may also need to
embrace these concepts, suggesting a need for structural change. For example, embracing the role
of design might involve making the field of human-computer interaction more central in computer
science curricula (as opposed to its current role as a popular elective). It might also involve changes
in how the rest of computing is taught, leveraging design’s studio approaches [25, 41, 119], ideas
of productive failure and iteration (e.g. [11, 117]), and approaches to teaching [39, 77, 93] and
assessing [41, 44] creativity and prototyping processes. In these ways, teachers at all levels can
use design to broaden the definition of computing while simultaneously respecting its role as a
distinct discipline.

In addition to teachers, there are many opportunities for school administrators to embrace de-
sign more systematically. Some secondary schools in the United States, for example, already teach
graphic design courses, but these courses are often siloed to arts departments and disconnected
from computing education. K-12 administrators could support leveraging both design and comput-
ing in these respective learning contexts. Such administrative changes might also require higher-
level policy change that provides more comprehensive definitions of computing that recognize the
distinct role of design.

As with any work that suggests directions for the future of computing education, there are some
intrinsic limitations to what can be realized in practice. First, primary and secondary curricula
coverage for any area is necessarily constrained by limitations of time, and computing education
is no exception to this. Deciding which computing topics to prioritize over others in order to better
integrate an understanding of computing design becomes a question of curriculum design. Our
results uncovered and characterized the presence of design within established computing curric-
ula, suggesting that implementing the changes discussed above might be less of a full excision of
particular topics and more of a change to the framings and approaches we use to better represent
the design that is already there. The goal of this article is not to provide a definitive answer as
to which computing topics should be cut in future curriculum, but rather to discuss and provide
insights into what computing education might gain if it were to prioritize making the presence
of design more explicit. In this way, our contribution is similar to recent work that suggests
improving computing education by approaching it from perspectives like sociopolitical identity
[139] or culture [38]. Another limitation is that K-12 educators and administrators will have
questions about what the results presented in this article imply for their particular contexts and
courses, some of which we cannot yet answer definitively. As discussed in Section 3.4, teaching
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and learning design within computing contexts is difficult for a number of reasons, and while
recent work has begun to explore this space, much of it focuses on postsecondary education. We
still need to develop pre-service preparation programs, useful materials, and concrete pedagogical
strategies for teaching computing design topics. These areas provide directions for future research
on design and computing’s overlap in primary and secondary educational contexts.

While there are challenging choices to make about computing curriculum, acting on these im-
plications in some way is critical to help students gain a holistic understanding of computing in the
broader world. Understanding the ways that design manifests in computing contexts—in decisions
about how software fits into the world and how to implement real-world requirements—enables
computing students to better recognize and respond to pervasive embedded biases in software
[12, 34, 88], whether they are the software’s creator or simply a user who experiences its effects.
Because even basic changes in deploying computing education across the globe are already chal-
lenging, many of these implications may seem intractably hard. On the other hand, changing com-
puting education infrastructure, such as curricula, programs, and policy, will never be easier than
it is now, where there is little inertia, much momentum, and immense opportunities for literacy.
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